The Alpha Geek – Geeking Out

Movement

Project #25 – Movement – EEPROM – Mk09

——

#DonLucElectronics #DonLuc #EEPROM #HMC5883L #Compass #ADXL345 #Accelerometer #Movement #ESP32 #Bluetooth #Elecrow #DFRobot #Arduino #Project #Patreon #Electronics #Microcontrollers #IoT #Fritzing #Programming #Consultant

——

EEPROM

——

EEPROM

——

EEPROM

——

EEPROM

EEPROM (Electrically Erasable Programmable Read-only Memory) is a type of non-volatile memory. EEPROM is a type of non-volatile ROM that enables individual bytes of data to be erased and reprogrammed. That is why EEPROM chips are known as byte erasable chips. EEPROM is usually used to store small amounts of data in computing and other electronic devices. It is used in computers, usually integrated in microcontrollers such as smart cards and remote keyless systems, or as a separate chip device, to store relatively small amounts of data by allowing individual bytes to be erased and reprogrammed.

The microcontroller on the Arduino boards have 512 bytes of EEPROM: memory whose values are kept when the board is turned off. Functions in the EEPROM class are automatically included with the platform for your board, meaning you do not need to install any external libraries. The supported microcontrollers on the various Arduino have different amounts of EEPROM: 1024 bytes on the ATmega328P, 512 bytes on the ATmega168 and ATmega8, 4 KB (4096 bytes) on the ATmega1280 and ATmega2560. The Arduino boards have an emulated EEPROM space of 1024 bytes. The EEPROM library on ESP32 provides a reliable way to store data persistently, so that it remains accessible even when the power supply is disconnected. Unlike RAM, the data we save with the EEPROM library does not get lost when power is cut. This feature makes it an ideal choice for retaining configurations, settings, and other important data in embedded devices like the ESP32.

DL2501Mk07

1 x DFRobot FireBeetle 2 ESP32-E
1 x Fermion: 2.0″ 320×240 IPS TFT LCD
1 x GDL Line 10 CM
1 x Crowtail – I2C Hub 2.0
1 x Crowtail – 3-Axis Digital Compass
1 x Crowtail – 3-Axis Digital Accelerometer
1 x Lithium Ion Battery – 1000mAh
1 x Switch
1 x Bluetooth Serial Terminal
1 x USB 3.1 Cable A to C

FireBeetle 2 ESP32-E

SCL – 22
SDA – 21
DC – D2
CS – D6
RST – D3
RX2 – Bluetooth
TX2 – Bluetooth
VIN – +3.3V
GND – GND

DLE-EEPROM-UID-ESP32Mk001

DLE-EEPROM-UID-ESP32Mk001.ino

/* ***** Don Luc Electronics © ******
Software Version Information
DLE-EEPROM-UID-ESP32Mk001
ver: ESPMk001
EEPROM with unique ID
*/

// Include Library Code
// EEPROM library to read and write EEPROM with unique ID for unit
#include "EEPROM.h"

// The current address in the EEPROM (i.e. which byte
// we're going to write to next)
#define EEPROM_SIZE 64

// Software Version Information
String sver = "ESPMk001";
// Unit ID information
String uid = "DLE0001"; 
// Read Unique ID
// String ruid = "";

void loop() 
{

   // <== Write and Read EEPROM 
   isEEPROMw();
  
}

getEEPROM.ino

// getEEPROM
// Write and Read EEPROM with Unique ID for Unit
void isEEPROMw() {
  
  // EEPROM
  int incb = 0;
  int v = 0;
  String msg = "";
  String emp = "";
  String ruid = "";
  
  // Set Unit ID
  // The message starts with sid then is followed by 5 characters 
  // First clear a string buffer
  emp = "";
  // Loop through the 7 ID characters and write their ASCII (byte) value to the EEPROM
  for (int x = 0; x < 7; x++)
    {
       // Get ASCII value of character
       v = int(uid.charAt(x)); // + 5));
       // Add the actual character to the buffer so we can send it back to the PC
       emp = emp + uid.charAt(x + 5);
       // Write the value to the EEPROM
       EEPROM.write(x, v);
       EEPROM.commit();
    }

   delay( 500 );

   // Write EEPROM with Unique ID for Unit
   Serial.println( "Write ID Information");

  // Read ID Information
  // Unit ID
  for (int y = 0; y < 7; y++)
  {
    
    ruid = ruid + char(EEPROM.read(y));
    
  }
  
  // Read ID Information
  Serial.print( "Read ID Information: ");
  Serial.println( ruid );
  Serial.println( "Ok!" );
  ruid = "";

  delay( 5000 );
   
}

setup.ino

// Setup
void setup() 
{

  // EEPROM with unique ID
  EEPROM.begin(EEPROM_SIZE);

  // Open the serial port at 9600 bps:
  Serial.begin(9600);

  // Serial
  Serial.print( "Software Version Information: ");
  Serial.println( sver );
  Serial.print( "Unit ID Information: ");
  Serial.println( uid );
  
  delay(5000);
   
}

——

DL2501Mk07p

DL2501Mk07p.ino

/****** Don Luc Electronics © ******
Software Version Information
Project #25 - Movement - EEPROM - Mk09
25-09
DL2501Mk07p.ino
DL2501Mk07
1 x DFRobot FireBeetle 2 ESP32-E
1 x Fermion: 2.0" 320x240 IPS TFT LCD
1 x GDL Line 10 CM
1 x Crowtail - I2C Hub 2.0
1 x Crowtail - 3-Axis Digital Compass
1 x Crowtail - 3-Axis Digital Accelerometer
1 x Lithium Ion Battery - 1000mAh
1 x Switch
1 x Bluetooth Serial Terminal
1 x USB 3.1 Cable A to C
*/

// Include the Library Code
// EEPROM Library to Read and Write EEPROM
// with Unique ID for Unit
#include "EEPROM.h"
// Arduino
#include <Arduino.h>
// Wire
#include <Wire.h>
// DFRobot Display GDL API
#include <DFRobot_GDL.h>
// Bluetooth Serial
#include "BluetoothSerial.h"
#if !defined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED)
#error Bluetooth is not enabled! Please run `make menuconfig` to and enable it
#endif
// Accelemeter ADXL345
#include <ADXL345.h>
// Compass HMC5883L
#include <HMC5883L.h>

// Compass HMC5883L
HMC5883L compass;
// Heading
float heading;
// Heading Degrees
float headingDegrees;

// Variable ADXL345 library
ADXL345 adxl;
// Accelerometer ADXL345
// x, y, z
int x;
int y;
int z;
// Standard Gravity
// xyz
double xyz[3];
double ax;
double ay;
double az;

// FullString
String FullString = "";

// Bluetooth Serial
BluetoothSerial SerialBT;

// Defined ESP32
#define TFT_DC  D2
#define TFT_CS  D6
#define TFT_RST D3

/*dc=*/ /*cs=*/ /*rst=*/
// DFRobot Display 240x320
DFRobot_ST7789_240x320_HW_SPI screen(TFT_DC, TFT_CS, TFT_RST);

// EEPROM Unique ID Information
#define EEPROM_SIZE 64
String uid = "";

// Software Version Information
String sver = "25-09";

void loop() {

  // Accelemeter ADXL345
  isADXL345();

  // Compass HMC5883L
  isHMC5883L();

  // isEEPROM
  isEEPROM();

  // Accelemeter ADXL345 Compass HMC5883L Display
  isDisplayADXL345HMC5883L();

  // Delay 0.5 Second
  delay( 500 );

}

getAccelemeterADXL345.ino

// Accelemeter ADXL345
// Setup Accelemeter ADXL345
void isSetupADXL345(){

  // Power On
  adxl.powerOn();

  // Set activity inactivity thresholds (0-255)
  // 62.5mg per increment
  adxl.setActivityThreshold(75);
  // 62.5mg per increment
  adxl.setInactivityThreshold(75);
  // How many seconds of no activity is inactive?
  adxl.setTimeInactivity(10);
 
  //look of activity movement on this axes - 1 == on; 0 == off 
  adxl.setActivityX(1);
  adxl.setActivityY(1);
  adxl.setActivityZ(1);
 
  //look of inactivity movement on this axes - 1 == on; 0 == off
  adxl.setInactivityX(1);
  adxl.setInactivityY(1);
  adxl.setInactivityZ(1);
 
  // Look of tap movement on this axes - 1 == on; 0 == off
  adxl.setTapDetectionOnX(0);
  adxl.setTapDetectionOnY(0);
  adxl.setTapDetectionOnZ(1);
 
  // Set values for what is a tap, and what is a double tap (0-255)
  // 62.5mg per increment
  adxl.setTapThreshold(50);
  // 625us per increment
  adxl.setTapDuration(15);
  // 1.25ms per increment
  adxl.setDoubleTapLatency(80);
  // 1.25ms per increment
  adxl.setDoubleTapWindow(200);
 
  // set values for what is considered freefall (0-255)
  // (5 - 9) recommended - 62.5mg per increment
  adxl.setFreeFallThreshold(7);
  // (20 - 70) recommended - 5ms per increment
  adxl.setFreeFallDuration(45);
 
  // Setting all interrupts to take place on int pin 1
  // I had issues with int pin 2, was unable to reset it
  adxl.setInterruptMapping( ADXL345_INT_SINGLE_TAP_BIT,   ADXL345_INT1_PIN );
  adxl.setInterruptMapping( ADXL345_INT_DOUBLE_TAP_BIT,   ADXL345_INT1_PIN );
  adxl.setInterruptMapping( ADXL345_INT_FREE_FALL_BIT,    ADXL345_INT1_PIN );
  adxl.setInterruptMapping( ADXL345_INT_ACTIVITY_BIT,     ADXL345_INT1_PIN );
  adxl.setInterruptMapping( ADXL345_INT_INACTIVITY_BIT,   ADXL345_INT1_PIN );
 
  // Register interrupt actions - 1 == on; 0 == off  
  adxl.setInterrupt( ADXL345_INT_SINGLE_TAP_BIT, 1);
  adxl.setInterrupt( ADXL345_INT_DOUBLE_TAP_BIT, 1);
  adxl.setInterrupt( ADXL345_INT_FREE_FALL_BIT,  1);
  adxl.setInterrupt( ADXL345_INT_ACTIVITY_BIT,   1);
  adxl.setInterrupt( ADXL345_INT_INACTIVITY_BIT, 1);

}
// Accelemeter ADXL345
void isADXL345(){

  // Read the accelerometer values and store them in variables  x,y,z
  adxl.readXYZ(&x, &y, &z);

  // Output
  // FullString
  // ************
  FullString = "************\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {
    
    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
       
  }
  
  // FullString
  FullString = "Values of X , Y , Z: " + String(x) + " , " + 
  String(y) + " , " + String(z) + + "\r\n";

  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }
  
  // Standard Gravity
  // Acceleration
  adxl.getAcceleration(xyz);

  // Output
  ax = xyz[0];
  ay = xyz[1];
  az = xyz[2];
  
  // FullString
  // ************
  FullString = "************\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {
    
    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
       
  }

  // FullString
  // xg
  FullString = "X = " + String(ax) + " g" + "\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }
  // yg
  FullString = "y = " + String(ay) + " g" + "\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }
  // zg
  FullString = "z = " + String(az) + " g" + "\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }

}

getCompassHMC5883L.ino

// HMC5883L Triple Axis Digital Compass
// Setup HMC5883L
void isSetupHMC5883L(){

  // Initialize Initialize HMC5883L
  compass.begin();

  // Set measurement range
  compass.setRange(HMC5883L_RANGE_1_3GA);

  // Set measurement mode
  compass.setMeasurementMode(HMC5883L_CONTINOUS);

  // Set data rate
  compass.setDataRate(HMC5883L_DATARATE_30HZ);

  // Set number of samples averaged
  compass.setSamples(HMC5883L_SAMPLES_8);

  // Set calibration offset
  compass.setOffset(0, 0);
  
}
// Compass HMC5883L
void isHMC5883L(){

  // Vector norm
  Vector norm = compass.readNormalize();

  // Calculate heading
  heading = atan2(norm.YAxis, norm.XAxis);

  // Set declination angle on your location and fix heading
  // You can find your declination on: http://magnetic-declination.com/
  // (+) Positive or (-) for negative
  // Latitude: 32° 39' 7.9" N
  // Longitude: 115° 28' 6.2" W
  // Magnetic Declination: +10° 35'
  // Declination is POSITIVE (EAST)
  // Inclination: 58° 4'
  // Magnetic field strength: 45759.1 nT
  // Formula: (deg + (min / 60.0)) / (180 / M_PI);
  float declinationAngle = (10.0 + (35.0 / 60.0)) / (180 / M_PI);
  heading += declinationAngle;

  // Correct for heading < 0deg and heading > 360deg
  if (heading < 0)
  {
    heading += 2 * PI;
  }

  if (heading > 2 * PI)
  {
    heading -= 2 * PI;
  }

  // Convert to degrees
  headingDegrees = heading * 180/M_PI; 

  // Output
  // FullString
  // ************
  FullString = "************\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {
    
    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }

  // FullString
  // Heading
  FullString = "Heading = " + String( heading ) + "\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }

  // FullString
  // Degress
  FullString = "Degress = " + String( headingDegrees ) + "\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }
  
}

getDisplay.ino

// DFRobot Display 240x320
// DFRobot Display 240x320 - UID
void isDisplayUID(){

  // DFRobot Display 240x320
  // Text Display
  // Text Wrap
  screen.setTextWrap(false);
  // Rotation
  screen.setRotation(3);
  // Fill Screen => black
  screen.fillScreen(0x0000);
  // Text Color => white
  screen.setTextColor(0xffff);
  // Font => Free Sans Bold 12pt
  screen.setFont(&FreeSansBold12pt7b);
  // TextSize => 1.5
  screen.setTextSize(1.5);
  // Don Luc Electronics
  screen.setCursor(0, 30);
  screen.println("Don Luc Electronics");
  // EEPROM
  screen.setCursor(0, 60);
  screen.println("EEPROM");
  // Version
  screen.setCursor(0, 90);
  screen.println("Version");
  screen.setCursor(0, 120);
  screen.println( sver );
  // EEPROM
  screen.setCursor(0, 150);
  screen.println("EEPROM");
  screen.setCursor(0, 180);
  screen.println( uid );

}
// Accelemeter ADXL345
void isDisplayADXL345HMC5883L(){

  // DFRobot Display 240x320
  // Text Display
  // Text Wrap
  screen.setTextWrap(false);
  // Rotation
  screen.setRotation(3);
  // Fill Screen => white
  screen.fillScreen(0xffff);
  // Text Color => blue
  screen.setTextColor(0x001F);
  // Font => Free Sans Bold 12pt
  screen.setFont(&FreeSansBold12pt7b);
  // TextSize => 1.5
  screen.setTextSize(1.5);
  // Accelemeter ADXL345
  screen.setCursor(0, 30);
  screen.println("Accelemeter ADXL345");
  // Accelemeter ADXL345 X
  screen.setCursor(0, 60);
  screen.println("X: ");
  screen.setCursor(40, 60);
  screen.println( x );
  // Accelemeter ADXL345 Y
  screen.setCursor(0, 90);
  screen.println( "Y: " );
  screen.setCursor(40, 90);
  screen.println( y );
  // Accelemeter ADXL345 Z
  screen.setCursor(0, 120);
  screen.println( "Z: " );
  screen.setCursor(40, 120);
  screen.println( z );
  // Compass HMC5883L
  screen.setCursor(0, 150);
  screen.println( "Compass HMC5883L" );
  // Heading
  screen.setCursor(0, 180);
  screen.println( "Heading = " );
  screen.setCursor(130, 180);
  screen.println( heading );
  // Degress
  screen.setCursor(0, 210);
  screen.println( "Degress = " );
  screen.setCursor(130, 210);
  screen.println( headingDegrees );
  
}

getEEPROM.ino

// EEPROM
// isUID EEPROM Unique ID
void isUID() {
  
  // Is Unit ID
  uid = "";
  for (int x = 0; x < 7; x++)
  {
    uid = uid + char(EEPROM.read(x));
  }
  
}
// isEEPROM
void isEEPROM(){

  // FullString
  // ************
  FullString = "************\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {
    
    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }

  // FullString
  // EEPROM
  FullString = "EEPROM = " + String( uid ) + "\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }
  
}

setup.ino

// Setup
void setup()
{
 
  // Serial Begin
  Serial.begin(115200);
  Serial.println("Starting BLE work!");

  // Bluetooth Serial
  SerialBT.begin("DL2501Mk07");
  Serial.println("Bluetooth Started! Ready to pair...");

  // Delay
  delay( 100 );

  // EEPROM Size
  EEPROM.begin(EEPROM_SIZE);
  
  // EEPROM Unique ID
  isUID();
  
  // Delay
  delay(100);

  // DFRobot Display 240x320
  screen.begin();

  // Delay
  delay(100);

  // Setup Accelemeter ADXL345
  isSetupADXL345();

  // Setup HMC5883L
  isSetupHMC5883L();

  // DFRobot Display 240x320 - UID
  // Don Luc Electronics
  // Version
  isDisplayUID();

  // Delay 5 Second
  delay( 5000 );

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Electronics, IoT, Teacher, Instructor, R&D and Consultant

  • Programming Language
  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi, Arm, Silicon Labs, Espressif, Etc…)
  • IoT
  • Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
  • Robotics
  • Automation
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Machine Learning
  • Artificial Intelligence (AI)
  • RTOS
  • Sensors, eHealth Sensors, Biosensor, and Biometric
  • Research & Development (R & D)
  • Consulting

Follow Us

Luc Paquin – Curriculum Vitae – 2025
https://www.donluc.com/luc/

Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Patreon: https://patreon.com/DonLucElectronics59
DFRobot: https://learn.dfrobot.com/user-10186.html
Hackster.io: https://www.hackster.io/neosteam-labs
Elecrow: https://www.elecrow.com/share/sharepj/center/no/760816d385ebb1edc0732fd873bfbf13
TikTok: https://www.tiktok.com/@luc.paquin8
Twitch: https://www.twitch.tv/lucpaquin
LinkedIn: https://www.linkedin.com/in/jlucpaquin/

Don Luc

Project #25 – Movement – HMC5883L – Mk08

——

#DonLucElectronics #DonLuc #HMC5883L #ADXL345 #Accelerometer #Movement #ESP32 #Bluetooth #Elecrow #DFRobot #Arduino #Project #Patreon #Electronics #Microcontrollers #IoT #Fritzing #Programming #Consultant

——

HMC5883L

——

HMC5883L

——

HMC5883L

——

Crowtail – 3-Axis Digital Compass

Crowtail-3-Axis Compass module, a member of Crowtail family uses I²C based Honeywell HMC5883L digital compass. This ASIC is equipped with high resolution HMC118X magneto-resistive sensors and a 12-bit ADC. It provides compass heading accuracy up to 1° to 2°. Signal conditioning like amplification, automatic degaussing strap drivers and offset cancellation are inbuilt. This Crowtail module also includes a XC6206P332MR for power supply requirement. Hence user can connect any 3.3V to 6V DC power supply.

  • -Crowtail compatible interface
  • -3-Axis Magneto-resistive type sensors
  • -I²C serial interface
  • -1° to 2° Degree heading accuracy
  • -Up to 116 Hz Maximum output rate
  • -Built-In self test
  • -Low cost compassing
  • -Magnetometry
  • -Pedestrian navigation
  • -Hobby auto navigation
  • -Compassing support for mobile devices and portable computers

DL2501Mk05

1 x DFRobot FireBeetle 2 ESP32-E
1 x Fermion: 2.0″ 320×240 IPS TFT LCD
1 x GDL Line 10 CM
1 x Crowtail – I2C Hub 2.0
1 x Crowtail – 3-Axis Digital Compass
1 x Crowtail – 3-Axis Digital Accelerometer
1 x Lithium Ion Battery – 1000mAh
1 x Switch
1 x Bluetooth Serial Terminal
1 x USB 3.1 Cable A to C

FireBeetle 2 ESP32-E

SCL – 22
SDA – 21
DC – D2
CS – D6
RST – D3
RX2 – Bluetooth
TX2 – Bluetooth
VIN – +3.3V
GND – GND

DL2501Mk05p

DL2501Mk05p.ino

/****** Don Luc Electronics © ******
Software Version Information
Project #25 - Movement - HMC5883L - Mk08
25-08
DL2501Mk05p.ino
DL2501Mk05
1 x DFRobot FireBeetle 2 ESP32-E
1 x Fermion: 2.0" 320x240 IPS TFT LCD
1 x GDL Line 10 CM
1 x Crowtail - I2C Hub 2.0
1 x Crowtail - 3-Axis Digital Compass
1 x Crowtail - 3-Axis Digital Accelerometer
1 x Lithium Ion Battery - 1000mAh
1 x Switch
1 x Bluetooth Serial Terminal
1 x USB 3.1 Cable A to C
*/

// Include the Library Code
// Arduino
#include <Arduino.h>
// Wire
#include <Wire.h>
// DFRobot Display GDL API
#include <DFRobot_GDL.h>
// Bluetooth Serial
#include "BluetoothSerial.h"
#if !defined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED)
#error Bluetooth is not enabled! Please run `make menuconfig` to and enable it
#endif
// Accelemeter ADXL345
#include <ADXL345.h>
// Compass HMC5883L
#include <HMC5883L.h>

// Compass HMC5883L
HMC5883L compass;
// Heading
float heading;
// Heading Degrees
float headingDegrees;

// Variable ADXL345 library
ADXL345 adxl;
// Accelerometer ADXL345
// x, y, z
int x;
int y;
int z;
// Standard Gravity
// xyz
double xyz[3];
double ax;
double ay;
double az;

// FullString
String FullString = "";

// Bluetooth Serial
BluetoothSerial SerialBT;

// Defined ESP32
#define TFT_DC  D2
#define TFT_CS  D6
#define TFT_RST D3

/*dc=*/ /*cs=*/ /*rst=*/
// DFRobot Display 240x320
DFRobot_ST7789_240x320_HW_SPI screen(TFT_DC, TFT_CS, TFT_RST);

// Software Version Information
String sver = "25-08";

void loop() {

  // Accelemeter ADXL345
  isADXL345();

  // Compass HMC5883L
  isHMC5883L();

  // Accelemeter ADXL345 Compass HMC5883L Display
  isDisplayADXL345HMC5883L();

  // Delay 0.5 Second
  delay( 500 );

}

getAccelemeterADXL345.ino

// Accelemeter ADXL345
// Setup Accelemeter ADXL345
void isSetupADXL345(){

  // Power On
  adxl.powerOn();

  // Set activity inactivity thresholds (0-255)
  // 62.5mg per increment
  adxl.setActivityThreshold(75);
  // 62.5mg per increment
  adxl.setInactivityThreshold(75);
  // How many seconds of no activity is inactive?
  adxl.setTimeInactivity(10);
 
  //look of activity movement on this axes - 1 == on; 0 == off 
  adxl.setActivityX(1);
  adxl.setActivityY(1);
  adxl.setActivityZ(1);
 
  //look of inactivity movement on this axes - 1 == on; 0 == off
  adxl.setInactivityX(1);
  adxl.setInactivityY(1);
  adxl.setInactivityZ(1);
 
  // Look of tap movement on this axes - 1 == on; 0 == off
  adxl.setTapDetectionOnX(0);
  adxl.setTapDetectionOnY(0);
  adxl.setTapDetectionOnZ(1);
 
  // Set values for what is a tap, and what is a double tap (0-255)
  // 62.5mg per increment
  adxl.setTapThreshold(50);
  // 625us per increment
  adxl.setTapDuration(15);
  // 1.25ms per increment
  adxl.setDoubleTapLatency(80);
  // 1.25ms per increment
  adxl.setDoubleTapWindow(200);
 
  // set values for what is considered freefall (0-255)
  // (5 - 9) recommended - 62.5mg per increment
  adxl.setFreeFallThreshold(7);
  // (20 - 70) recommended - 5ms per increment
  adxl.setFreeFallDuration(45);
 
  // Setting all interrupts to take place on int pin 1
  // I had issues with int pin 2, was unable to reset it
  adxl.setInterruptMapping( ADXL345_INT_SINGLE_TAP_BIT,   ADXL345_INT1_PIN );
  adxl.setInterruptMapping( ADXL345_INT_DOUBLE_TAP_BIT,   ADXL345_INT1_PIN );
  adxl.setInterruptMapping( ADXL345_INT_FREE_FALL_BIT,    ADXL345_INT1_PIN );
  adxl.setInterruptMapping( ADXL345_INT_ACTIVITY_BIT,     ADXL345_INT1_PIN );
  adxl.setInterruptMapping( ADXL345_INT_INACTIVITY_BIT,   ADXL345_INT1_PIN );
 
  // Register interrupt actions - 1 == on; 0 == off  
  adxl.setInterrupt( ADXL345_INT_SINGLE_TAP_BIT, 1);
  adxl.setInterrupt( ADXL345_INT_DOUBLE_TAP_BIT, 1);
  adxl.setInterrupt( ADXL345_INT_FREE_FALL_BIT,  1);
  adxl.setInterrupt( ADXL345_INT_ACTIVITY_BIT,   1);
  adxl.setInterrupt( ADXL345_INT_INACTIVITY_BIT, 1);

}
// Accelemeter ADXL345
void isADXL345(){

  // Read the accelerometer values and store them in variables  x,y,z
  adxl.readXYZ(&x, &y, &z);

  // Output
  // FullString
  // ************
  FullString = "************\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {
    
    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
       
  }
  
  // FullString
  FullString = "Values of X , Y , Z: " + String(x) + " , " + 
  String(y) + " , " + String(z) + + "\r\n";

  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }
  
  // Standard Gravity
  // Acceleration
  adxl.getAcceleration(xyz);

  // Output
  ax = xyz[0];
  ay = xyz[1];
  az = xyz[2];
  
  // FullString
  // ************
  FullString = "************\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {
    
    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
       
  }

  // FullString
  // xg
  FullString = "X = " + String(ax) + " g" + "\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }
  // yg
  FullString = "y = " + String(ay) + " g" + "\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }
  // zg
  FullString = "z = " + String(az) + " g" + "\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }

}

getCompassHMC5883L.ino

// HMC5883L Triple Axis Digital Compass
// Setup HMC5883L
void isSetupHMC5883L(){

  // Initialize Initialize HMC5883L
  compass.begin();

  // Set measurement range
  compass.setRange(HMC5883L_RANGE_1_3GA);

  // Set measurement mode
  compass.setMeasurementMode(HMC5883L_CONTINOUS);

  // Set data rate
  compass.setDataRate(HMC5883L_DATARATE_30HZ);

  // Set number of samples averaged
  compass.setSamples(HMC5883L_SAMPLES_8);

  // Set calibration offset
  compass.setOffset(0, 0);
  
}
// Compass HMC5883L
void isHMC5883L(){

  // Vector norm
  Vector norm = compass.readNormalize();

  // Calculate heading
  heading = atan2(norm.YAxis, norm.XAxis);

  // Set declination angle on your location and fix heading
  // You can find your declination on: http://magnetic-declination.com/
  // (+) Positive or (-) for negative
  // Latitude: 32° 39' 7.9" N
  // Longitude: 115° 28' 6.2" W
  // Magnetic Declination: +10° 35'
  // Declination is POSITIVE (EAST)
  // Inclination: 58° 4'
  // Magnetic field strength: 45759.1 nT
  // Formula: (deg + (min / 60.0)) / (180 / M_PI);
  float declinationAngle = (10.0 + (35.0 / 60.0)) / (180 / M_PI);
  heading += declinationAngle;

  // Correct for heading < 0deg and heading > 360deg
  if (heading < 0)
  {
    heading += 2 * PI;
  }

  if (heading > 2 * PI)
  {
    heading -= 2 * PI;
  }

  // Convert to degrees
  headingDegrees = heading * 180/M_PI; 

  // Output
  // FullString
  // ************
  FullString = "************\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {
    
    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }

  // FullString
  // Heading
  FullString = "Heading = " + String( heading ) + "\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }

  // FullString
  // Degress
  FullString = "Degress = " + String( headingDegrees ) + "\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }
  
}

getDisplay.ino

// DFRobot Display 240x320
// DFRobot Display 240x320 - UID
void isDisplayUID(){

  // DFRobot Display 240x320
  // Text Display
  // Text Wrap
  screen.setTextWrap(false);
  // Rotation
  screen.setRotation(3);
  // Fill Screen => black
  screen.fillScreen(0x0000);
  // Text Color => white
  screen.setTextColor(0xffff);
  // Font => Free Sans Bold 12pt
  screen.setFont(&FreeSansBold12pt7b);
  // TextSize => 1.5
  screen.setTextSize(1.5);
  // Don Luc Electronics
  screen.setCursor(0, 30);
  screen.println("Don Luc Electronics");
  // Accelemeter ADXL345
  screen.setCursor(0, 60);
  screen.println("Compass HMC5883L");
  // Version
  screen.setCursor(0, 90);
  screen.println("Version");
  screen.setCursor(0, 120);
  screen.println( sver );

}
// Accelemeter ADXL345
void isDisplayADXL345HMC5883L(){

  // DFRobot Display 240x320
  // Text Display
  // Text Wrap
  screen.setTextWrap(false);
  // Rotation
  screen.setRotation(3);
  // Fill Screen => white
  screen.fillScreen(0xffff);
  // Text Color => blue
  screen.setTextColor(0x001F);
  // Font => Free Sans Bold 12pt
  screen.setFont(&FreeSansBold12pt7b);
  // TextSize => 1.5
  screen.setTextSize(1.5);
  // Accelemeter ADXL345
  screen.setCursor(0, 30);
  screen.println("Accelemeter ADXL345");
  // Accelemeter ADXL345 X
  screen.setCursor(0, 60);
  screen.println("X: ");
  screen.setCursor(40, 60);
  screen.println( x );
  // Accelemeter ADXL345 Y
  screen.setCursor(0, 90);
  screen.println( "Y: " );
  screen.setCursor(40, 90);
  screen.println( y );
  // Accelemeter ADXL345 Z
  screen.setCursor(0, 120);
  screen.println( "Z: " );
  screen.setCursor(40, 120);
  screen.println( z );
  // Compass HMC5883L
  screen.setCursor(0, 150);
  screen.println( "Compass HMC5883L" );
  // Heading
  screen.setCursor(0, 180);
  screen.println( "Heading = " );
  screen.setCursor(130, 180);
  screen.println( heading );
  // Degress
  screen.setCursor(0, 210);
  screen.println( "Degress = " );
  screen.setCursor(130, 210);
  screen.println( headingDegrees );
  
}

setup.ino

// Setup
void setup()
{
 
  // Serial Begin
  Serial.begin(115200);
  Serial.println("Starting BLE work!");

  // Bluetooth Serial
  SerialBT.begin("DL2501Mk05");
  Serial.println("Bluetooth Started! Ready to pair...");
  
  // Delay
  delay(100);

  // DFRobot Display 240x320
  screen.begin();

  // Delay
  delay(100);

  // Setup Accelemeter ADXL345
  isSetupADXL345();

  // Setup HMC5883L
  isSetupHMC5883L();

  // DFRobot Display 240x320 - UID
  // Don Luc Electronics
  // Version
  isDisplayUID();

  // Delay 5 Second
  delay( 5000 );

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Electronics, IoT, Teacher, Instructor, R&D and Consultant

  • Programming Language
  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi, Arm, Silicon Labs, Espressif, Etc…)
  • IoT
  • Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
  • Robotics
  • Automation
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Machine Learning
  • Artificial Intelligence (AI)
  • RTOS
  • Sensors, eHealth Sensors, Biosensor, and Biometric
  • Research & Development (R & D)
  • Consulting

Follow Us

Luc Paquin – Curriculum Vitae – 2025
https://www.donluc.com/luc/

Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Patreon: https://patreon.com/DonLucElectronics59
DFRobot: https://learn.dfrobot.com/user-10186.html
Hackster.io: https://www.hackster.io/neosteam-labs
Elecrow: https://www.elecrow.com/share/sharepj/center/no/760816d385ebb1edc0732fd873bfbf13
TikTok: https://www.tiktok.com/@luc.paquin8
Twitch: https://www.twitch.tv/lucpaquin
LinkedIn: https://www.linkedin.com/in/jlucpaquin/

Don Luc

Project #25 – Movement – ADXL345 – Mk07

——

#DonLucElectronics #DonLuc #ADXL345 #Accelerometer #Movement #ESP32 #Bluetooth #Elecrow #DFRobot #Arduino #Project #Patreon #Electronics #Microcontrollers #IoT #Fritzing #Programming #Consultant

——

ADXL345

——

ADXL345

——

ADXL345

——

Crowtail – 3-Axis Digital Accelerometer

Crowtail – 3-Axis Digital Accelerometer with specific Crowtail interface, It’s base on an advanced 3-axis IC ADXL345. This is a high resolution digital accelerometer providing you at max 3.9mg/LSB resolution and large ±16g measurement range. Have no worry to implement it into your free-fall detection project, cause it’s robust enough to survive up to 10,000g shock. Meanwhile, it’s agile enough to detect single and double taps. It’s ideal for motion detection, gesture detection as well as robotics. This digital 3-axis accelerometer has excellent EMI protection.
Its variable output makes it suitable for a wide range of applications:

  • 1. HDD shock protection
  • 2. Vibration sensor
  • 3. Game controller input
  • 4. Robotics
  • 5. Smart vehicles
  • 6. Anywhere you need to obtain motion-sensing and orientation information.
  • 7. The excellent sensitivity provide high-precision output up to ±16g.

DL2501Mk03

1 x DFRobot FireBeetle 2 ESP32-E
1 x Fermion: 2.0″ 320×240 IPS TFT LCD
1 x GDL Line 10 CM
1 x Crowtail – I2C Hub 2.0
1 x Crowtail – 3-Axis Digital Accelerometer
1 x Lithium Ion Battery – 1000mAh
1 x Switch
1 x Bluetooth Serial Terminal
1 x USB 3.1 Cable A to C

FireBeetle 2 ESP32-E

SCL – 22
SDA – 21
DC – D2
CS – D6
RST – D3
RX2 – Bluetooth
TX2 – Bluetooth
VIN – +3.3V
GND – GND

DL2501Mk03p

DL2501Mk03p.ino

/****** Don Luc Electronics © ******
Software Version Information
Project #25 - Movement - ADXL345 - Mk07
25-07
DL2501Mk03p.ino
DL2501Mk03
1 x DFRobot FireBeetle 2 ESP32-E
1 x Fermion: 2.0" 320x240 IPS TFT LCD
1 x GDL Line 10 CM
1 x Crowtail - I2C Hub 2.0
1 x Crowtail - 3-Axis Digital Accelerometer
1 x Lithium Ion Battery - 1000mAh
1 x Switch
1 x Bluetooth Serial Terminal
1 x USB 3.1 Cable A to C
*/

// Include the Library Code
// Arduino
#include <Arduino.h>
// Wire
#include <Wire.h>
// DFRobot Display GDL API
#include <DFRobot_GDL.h>
// Bluetooth Serial
#include "BluetoothSerial.h"
#if !defined(CONFIG_BT_ENABLED) || !defined(CONFIG_BLUEDROID_ENABLED)
#error Bluetooth is not enabled! Please run `make menuconfig` to and enable it
#endif
// Accelemeter ADXL345
#include <ADXL345.h>

// Variable ADXL345 library
ADXL345 adxl;
// Accelerometer ADXL345
// x, y, z
int x;
int y;
int z;
// Standard Gravity
// xyz
double xyz[3];
double ax;
double ay;
double az;
// FullString
String FullString = "";

// Bluetooth Serial
BluetoothSerial SerialBT;

// Defined ESP32
#define TFT_DC  D2
#define TFT_CS  D6
#define TFT_RST D3

/*dc=*/ /*cs=*/ /*rst=*/
// DFRobot Display 240x320
DFRobot_ST7789_240x320_HW_SPI screen(TFT_DC, TFT_CS, TFT_RST);

// Software Version Information
String sver = "25-07";

void loop() {

  // Accelemeter ADXL345
  isADXL345();

  // Delay 0.5 Second
  delay( 500 );

}

getAccelemeterADXL345.ino

// Accelemeter ADXL345
// Setup Accelemeter ADXL345
void isSetupADXL345(){

  // Power On
  adxl.powerOn();

  // Set activity inactivity thresholds (0-255)
  // 62.5mg per increment
  adxl.setActivityThreshold(75);
  // 62.5mg per increment
  adxl.setInactivityThreshold(75);
  // How many seconds of no activity is inactive?
  adxl.setTimeInactivity(10);
 
  //look of activity movement on this axes - 1 == on; 0 == off 
  adxl.setActivityX(1);
  adxl.setActivityY(1);
  adxl.setActivityZ(1);
 
  //look of inactivity movement on this axes - 1 == on; 0 == off
  adxl.setInactivityX(1);
  adxl.setInactivityY(1);
  adxl.setInactivityZ(1);
 
  // Look of tap movement on this axes - 1 == on; 0 == off
  adxl.setTapDetectionOnX(0);
  adxl.setTapDetectionOnY(0);
  adxl.setTapDetectionOnZ(1);
 
  // Set values for what is a tap, and what is a double tap (0-255)
  // 62.5mg per increment
  adxl.setTapThreshold(50);
  // 625us per increment
  adxl.setTapDuration(15);
  // 1.25ms per increment
  adxl.setDoubleTapLatency(80);
  // 1.25ms per increment
  adxl.setDoubleTapWindow(200);
 
  // set values for what is considered freefall (0-255)
  // (5 - 9) recommended - 62.5mg per increment
  adxl.setFreeFallThreshold(7);
  // (20 - 70) recommended - 5ms per increment
  adxl.setFreeFallDuration(45);
 
  // Setting all interrupts to take place on int pin 1
  // I had issues with int pin 2, was unable to reset it
  adxl.setInterruptMapping( ADXL345_INT_SINGLE_TAP_BIT,   ADXL345_INT1_PIN );
  adxl.setInterruptMapping( ADXL345_INT_DOUBLE_TAP_BIT,   ADXL345_INT1_PIN );
  adxl.setInterruptMapping( ADXL345_INT_FREE_FALL_BIT,    ADXL345_INT1_PIN );
  adxl.setInterruptMapping( ADXL345_INT_ACTIVITY_BIT,     ADXL345_INT1_PIN );
  adxl.setInterruptMapping( ADXL345_INT_INACTIVITY_BIT,   ADXL345_INT1_PIN );
 
  // Register interrupt actions - 1 == on; 0 == off  
  adxl.setInterrupt( ADXL345_INT_SINGLE_TAP_BIT, 1);
  adxl.setInterrupt( ADXL345_INT_DOUBLE_TAP_BIT, 1);
  adxl.setInterrupt( ADXL345_INT_FREE_FALL_BIT,  1);
  adxl.setInterrupt( ADXL345_INT_ACTIVITY_BIT,   1);
  adxl.setInterrupt( ADXL345_INT_INACTIVITY_BIT, 1);

}
// Accelemeter ADXL345
void isADXL345(){

  // Read the accelerometer values and store them in variables  x,y,z
  adxl.readXYZ(&x, &y, &z);
  // Output x,y,z values 
  Serial.print("Values of X , Y , Z: ");
  Serial.print(x);
  Serial.print(" , ");
  Serial.print(y);
  Serial.print(" , ");
  Serial.println(z);

  // FullString
  FullString = "Values of X , Y , Z: " + String(x) + " , " + 
  String(y) + " , " + String(z) + + "\r\n";

  // Accelemeter ADXL345
  isDisplayADXL345();

  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }
  // Standard Gravity
  // Acceleration
  adxl.getAcceleration(xyz);
  ax = xyz[0];
  ay = xyz[1];
  az = xyz[2];
  Serial.print("X=");
  Serial.print(ax);
    Serial.println(" g");
  Serial.print("Y=");
  Serial.print(ay);
    Serial.println(" g");
  Serial.print("Z=");
  Serial.println(az);
    Serial.println(" g");
  Serial.println("**********************");

  // FullString
  // xg
  FullString = "X = " + String(ax) + " g" + "\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }
  // yg
  FullString = "y = " + String(ay) + " g" + "\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }
  // zg
  FullString = "z = " + String(az) + " g" + "\r\n";
  // FullString Bluetooth Serial + Serial
  for(int i = 0; i < FullString.length(); i++)
  {

    // Bluetooth Serial
    SerialBT.write(FullString.c_str()[i]);
    // Serial
    Serial.write(FullString.c_str()[i]);
    
  }

}

getDisplay.ino

// DFRobot Display 240x320
// DFRobot Display 240x320 - UID
void isDisplayUID(){

  // DFRobot Display 240x320
  // Text Display
  // Text Wrap
  screen.setTextWrap(false);
  // Rotation
  screen.setRotation(3);
  // Fill Screen => black
  screen.fillScreen(0x0000);
  // Text Color => white
  screen.setTextColor(0xffff);
  // Font => Free Mono 9pt
  screen.setFont(&FreeMono9pt7b);
  // TextSize => 1.5
  screen.setTextSize(1.5);
  // Don Luc Electronics
  screen.setCursor(0, 30);
  screen.println("Don Luc Electronics");
  // Accelemeter ADXL345
  screen.setCursor(0, 60);
  screen.println("Accelemeter ADXL345");
  // Version
  screen.setCursor(0, 90);
  screen.println("Version");
  screen.setCursor(0, 120);
  screen.println( sver );

}
// Accelemeter ADXL345
void isDisplayADXL345(){

  // DFRobot Display 240x320
  // Text Display
  // Text Wrap
  screen.setTextWrap(false);
  // Rotation
  screen.setRotation(3);
  // Fill Screen => black
  screen.fillScreen(0x0000);
  // Text Color => white
  screen.setTextColor(0xffff);
  // Font => Free Mono 9pt
  screen.setFont(&FreeMono9pt7b);
  // TextSize => 1.5
  screen.setTextSize(1.5);
  // Accelemeter ADXL345
  screen.setCursor(0, 30);
  screen.println("Accelemeter ADXL345");
  // Accelemeter ADXL345 X
  screen.setCursor(0, 60);
  screen.println("X: ");
  screen.setCursor(30, 60);
  screen.println( x );
  // Accelemeter ADXL345 Y
  screen.setCursor(0, 90);
  screen.println( "Y: " );
  screen.setCursor(30, 90);
  screen.println( y );
  // Accelemeter ADXL345 Z
  screen.setCursor(0, 120);
  screen.println( "Z: " );
  screen.setCursor(30, 120);
  screen.println( z );
  // Standard Gravity
  // Accelemeter ADXL345 Xg
  screen.setCursor(0, 150);
  screen.println( "Xg: " );
  screen.setCursor(40, 150);
  screen.println( ax );
  // Accelemeter ADXL345 Yg
  screen.setCursor(0, 180);
  screen.println( "Yg: " );
  screen.setCursor(40, 180);
  screen.println( ay );
  // Accelemeter ADXL345 Zg
  screen.setCursor(0, 210);
  screen.println( "Zg: " );
  screen.setCursor(40, 210);
  screen.println( az );
  
}

setup.ino

// Setup
void setup()
{
 
  // Serial Begin
  Serial.begin(115200);
  Serial.println("Starting BLE work!");

  // Bluetooth Serial
  SerialBT.begin("DL2501Mk03");
  Serial.println("Bluetooth Started! Ready to pair...");
  
  // Delay
  delay(100);

  // DFRobot Display 240x320
  screen.begin();

  // Delay
  delay(100);

  // Setup Accelemeter ADXL345
  isSetupADXL345();

  // DFRobot Display 240x320 - UID
  // Don Luc Electronics
  // Version
  isDisplayUID();

  // Delay 5 Second
  delay( 5000 );

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Electronics, IoT, Teacher, Instructor, R&D and Consultant

  • Programming Language
  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi, Arm, Silicon Labs, Espressif, Etc…)
  • IoT
  • Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
  • Robotics
  • Automation
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Machine Learning
  • Artificial Intelligence (AI)
  • RTOS
  • Sensors, eHealth Sensors, Biosensor, and Biometric
  • Research & Development (R & D)
  • Consulting

Follow Us

Luc Paquin – Curriculum Vitae – 2025
https://www.donluc.com/luc/

Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/
Patreon: https://patreon.com/DonLucElectronics59
DFRobot: https://learn.dfrobot.com/user-10186.html
Hackster.io: https://www.hackster.io/neosteam-labs
Elecrow: https://www.elecrow.com/share/sharepj/center/no/760816d385ebb1edc0732fd873bfbf13
TikTok: https://www.tiktok.com/@luc.paquin8
Twitch: https://www.twitch.tv/lucpaquin
LinkedIn: https://www.linkedin.com/in/jlucpaquin/

Don Luc

Project #26 – Radio Frequency – Bluetooth Moteino – Mk18

——

#DonLucElectronics #DonLuc #RadioFrequency #Bluetooth #Accelerometer #Magnetometer #Gyroscope #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant

——

Bluetooth Moteino

——

Bluetooth Moteino

——

Bluetooth Moteino

——

Moteino

Moteino began as a low power wireless Arduino compatible development platform based on the popular ATmega328p chip used in the Arduino UNO. Moteinos are compatible and can communicate with any other Arduino or development platform that uses the popular HopeRF RFM69 or LoRa transceivers, or even the older RFM12B. Moteino also comes with an optional SPI flash memory chip for wireless programming, or data logging. Moteino was designed to be a compact, highly customizable and affordable development platform, suitable for IoT, home automation and long range wireless projects.

Moteino in RFM12B to rebuild suggests doing as new without completely replacing. I decided to stripped down at RFM12B and rebuild in Bluetooth.

DL2306Mk05

1 x Moteino
1 x SparkFun Bluetooth Mate Silver
1 x SparkFun 9 Degrees of Freedom Breakout – MPU-9150
1 x LED Red
1 x SparkFun FTDI Basic Breakout – 5V
1 x SparkFun Cerberus USB Cable

Moteino

LED – Digital 8
RX – Digital 3
TX – Digital 2
SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND

——

DL2306Mk05p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #26 - Radio Frequency - Bluetooth Moteino - Mk18
26-18
DL2306Mk05p.ino
1 x Moteino
1 x SparkFun Bluetooth Mate Silver
1 x SparkFun 9 Degrees of Freedom Breakout - MPU-9150
1 x LED Red
1 x SparkFun FTDI Basic Breakout - 5V
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Software Serial
#include <SoftwareSerial.h>
// Two Wire Interface (TWI/I2C)
#include <Wire.h>
// I2CDev I2C utilities
#include "I2Cdev.h"
// MPU9150Lib 9-axis fusion
#include "MPU9150Lib.h"
// CalLib magnetometer and accelerometer calibration
#include "CalLib.h"
// Motion Driver InvenSense Embedded SDK v5.1
#include <dmpKey.h>
#include <dmpmap.h>
#include <inv_mpu.h>
#include <inv_mpu_dmp_motion_driver.h>
// EEPROM Magnetometer and Accelerometer data is stored
#include <EEPROM.h>

// the MPU object
MPU9150Lib MPU;
//  MPU_UPDATE_RATE defines the rate (in Hz)
// at which the MPU updates the sensor data and DMP output
#define MPU_UPDATE_RATE  (20)
//  MAG_UPDATE_RATE defines the rate (in Hz) at which the
// MPU updates the magnetometer data
//  MAG_UPDATE_RATE should be less than or equal to the MPU_UPDATE_RATE
#define MAG_UPDATE_RATE  (10)
//  MPU_MAG_MIX defines the influence that the magnetometer has on the yaw output.
//  The magnetometer itself is quite noisy so some mixing with the gyro yaw can help
//  significantly. Some example values are defined below:
// Just use gyro yaw
#define  MPU_MAG_MIX_GYRO_ONLY          0
// Just use magnetometer and no gyro yaw
#define  MPU_MAG_MIX_MAG_ONLY           1
// A good mix value 
#define  MPU_MAG_MIX_GYRO_AND_MAG       10
// mainly gyros with a bit of mag correction
#define  MPU_MAG_MIX_GYRO_AND_SOME_MAG  50
//  MPU_LPF_RATE is the low pas filter rate and can be between 5 and 188Hz
#define MPU_LPF_RATE   5

// This is our earth frame gravity vector - quaternions and vectors
MPUQuaternion gravity;

// Quaternion Result
float Quaternion_X = 0.0;
float Quaternion_Y = 0.0;
float Quaternion_Z = 0.0;

//  SERIAL_PORT_SPEED defines the speed to use for the debug serial port
#define  SERIAL_PORT_SPEED  115200

// Software Serial
// TX-O pin of bluetooth mate, Arduino D2
int bluetoothTx = 2;
// RX-I pin of bluetooth mate, Arduino D3
int bluetoothRx = 3;
// Bluetooth
SoftwareSerial bluetooth(bluetoothTx, bluetoothRx);
// BTA
String BTA = "0006664FAE18";

// LED Red
int iLedRed = 8;

// Variable to calculate frequency
unsigned long curr = 0;
unsigned long last = 0;
unsigned long freq;

// Software Version Information
String sver = "26-18";

void loop() {
  
  // MPU
  isMPU();

}

getMPU.ino

// MPU
// Setup MPU
void isSetupMPU() {

  // MPU
  MPU.init(MPU_UPDATE_RATE, MPU_MAG_MIX_GYRO_AND_MAG, MAG_UPDATE_RATE, MPU_LPF_RATE);     // start the MPU

  // Set up the initial gravity vector for quaternion rotation
  // Max value down the z axis
  gravity[QUAT_W] = 0;
  gravity[QUAT_X] = 0;
  gravity[QUAT_Y] = 0;
  gravity[QUAT_Z] = SENSOR_RANGE;
  
}
// MPU
void isMPU() {

  // Quaternion
  // This is our body frame gravity vector
  MPUQuaternion rotatedGravity;
  // This is the conjugate of the fused quaternion
  MPUQuaternion fusedConjugate;
  // Used in the rotation
  MPUQuaternion qTemp;
  // The accelerations
  MPUVector3 result;

  // Get the latest data
  if (MPU.read()) {
    
    // Need this for the rotation
    MPUQuaternionConjugate(MPU.m_fusedQuaternion, fusedConjugate);
    
    // Rotate the gravity vector into the body frame
    MPUQuaternionMultiply(gravity, MPU.m_fusedQuaternion, qTemp);
    MPUQuaternionMultiply(fusedConjugate, qTemp, rotatedGravity);
    
    // Now subtract rotated gravity from the body accels to get real accelerations.
    // Note that signs are reversed to get +ve acceleration results
    // in the conventional axes.
    // Quaternion Result
    Quaternion_X = -(MPU.m_calAccel[VEC3_X] - rotatedGravity[QUAT_X]);
    Quaternion_Y = -(MPU.m_calAccel[VEC3_Y] - rotatedGravity[QUAT_Y]);
    Quaternion_Z = -(MPU.m_calAccel[VEC3_Z] - rotatedGravity[QUAT_Z]);

    // Variable to calculate frequency
    curr = micros();
    freq = curr - last;
    last = curr;
    // Bluetooth
    Serial.print( "Blue|" + BTA + "|" );
    Serial.print( Quaternion_X );
    Serial.print( "|" );
    Serial.print( Quaternion_Y );
    Serial.print( "|" );
    Serial.print( Quaternion_Z );
    Serial.print( "|" );
    Serial.print( freq );
    Serial.println( "|*" );
    // Send any characters the Serial monitor prints to the bluetooth
    bluetooth.print((char)Serial.read());
   
  }

}

setup.ino

// Setup
void setup()
{
  
  // Serial
  Serial.begin(SERIAL_PORT_SPEED);

  // Bluetooth
  // The Bluetooth Mate defaults to 115200bps
  bluetooth.begin(115200);

  // LED Red
  pinMode(iLedRed, OUTPUT);
  digitalWrite(iLedRed, HIGH);
  
  // Give display time to power on
  delay(100);

  // Wire communicate with I2C / TWI devices
  Wire.begin();

  // Pause
  delay(50);

  // Setup MPU
  isSetupMPU();

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Programming Language
  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Machine Learning
  • RTOS
  • Research & Development (R & D)

Instructor, E-Mentor, STEAM, and Arts-Based Training

  • Programming Language
  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics

Follow Us

Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/

Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/@thesass2063
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Programming and Coding

——

#DonLucElectronics #DonLuc #SparkFunRedBoard #Coding #Movement #9DOF #Magnetometer #Accelerometer #Gyroscope #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant

——

Programming and Coding

——

Programming and Coding

——

Programming and Coding

——

Programming and Coding

Most of the development in the world is all because of technology. Technology has grown much faster than everything else. All the technology is developed because of coding and programming. Programming and coding hold a vital role in development. It also includes developments from small projects to big projects.

The programming vs coding difference lies in the very definition of both processes. Programming is the general process of creating a program that follows certain standards and performs a certain task. Coding, on the other hand, is a part of programming that deals strictly with converting the language we understand into binary commands for the machine.

As we have discussed before in our discussion on programming vs coding, coding is just a part of programming. Yet, it still requires some time and skill to learn. Programming languages are very different from natural languages, and their syntax can sometimes be very confusing. The hardest languages are low-level ones that are close to actual processor instructions.

Programming

Programmers, on the other hand, need to review documentation and perform analysis besides coding which requires extra tools. You can find various code analysis tools, code generators, databases and testing frameworks in their inventory. Programming is passing the instructions and information to the computer that describes how a program should be carried out. Programming helps computers to perform certain actions. Various types of programming languages available in the market, like C, C++, Java, Python, etc., help develop new and creative technology.

Coding

Since coding is a simple act of translation, you don’t need much to perform it. In most cases, a simple text editor would suffice. Coding is a process of establishing a successful communication between a software program and the computer hardware. The compilers translate the program into assembly language. The coding process converts the assembly language to Binary Coded Signals.

Computer systems are electronic devices that rely on binary coded signals for communication and functioning. The two types of binary coded signals are o’s and 1’s. These signals are generated using switches and transistors. In the process of coding the high-level language and the assembly level languages are translated into binary codes and the communication between the computer hardware and software application is established.

Microcontrollers – Arduino IDE

Since the launch of the Arduino open-source platform, the brand has established themselves at the center of an expansive open-source community. The Arduino ecosystem is comprised of a diverse combination of hardware and software. The versatility of Arduino and its simple interface makes it a leading choice for a wide range of users around the world from hobbyists, designers, and artists to product prototypes.

Arduino code is written in C++ with an addition of special methods and functions, which we’ll mention later on. C++ is a human-readable programming language. When you create a “Sketch”, the name given to Arduino code files. The Arduino Integrated Development Environment (IDE) is the main text editing program used for Arduino programming. It is where you’ll be typing up your code before uploading it to the board you want to program. Arduino coding it is processed and compiled to machine language.

DL2211Mk03

1 x SparkFun RedBoard Qwiic
1 x SparkFun Micro OLED (Qwiic)
1 x Qwiic Cable – 100mm
1 x SparkFun 9 Degrees of Freedom – Sensor Stick
1 x SparkFun Cerberus USB Cable

SparkFun RedBoard Qwiic

SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND

——

DL2211Mk03p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #25 - Movement - 9-DOF - Mk04
25-04
DL2210Mk06p.ino
1 x SparkFun RedBoard Qwiic
1 x SparkFun Micro OLED (Qwiic)
1 x Qwiic Cable - 100mm
1 x SparkFun 9 Degrees of Freedom - Sensor Stick
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Two Wire Interface (TWI/I2C)
#include <Wire.h>
// SparkFun Micro OLED
#include <SFE_MicroOLED.h>
// Includes and variables for IMU integration
// Accelerometer
#include <ADXL345.h>
// Magnetometer
#include <HMC58X3.h>
// MEMS Gyroscope
#include <ITG3200.h>
// Debug
#include "DebugUtils.h"
// FreeIMU
#include <CommunicationUtils.h>
#include <FreeIMU.h>

// Set the FreeIMU object
FreeIMU my3IMU = FreeIMU();

// Yaw Pitch Roll
float ypr[3];
float Yaw = 0;
float Pitch = 0;
float Roll = 0;

// SparkFun Micro OLED
#define PIN_RESET 9
#define DC_JUMPER 1
// I2C declaration
MicroOLED oled(PIN_RESET, DC_JUMPER);

// Software Version Information
String sver = "25-04";

void loop() {

  // isFreeIMU
  isFreeIMU();
  
  // Micro OLED
  isMicroOLED();

  // One delay in between reads
  delay(1000);
  
}

getFreeIMU.ino

// FreeIMU
// isFreeIMU
void isFreeIMU(){

  // FreeIMU
  // Yaw Pitch Roll
  my3IMU.getYawPitchRoll(ypr);
  // Yaw
  Yaw = ypr[0];
  // Pitch
  Pitch = ypr[1];
  // Roll
  Roll = ypr[2];

}

getMicroOLED.ino

// SparkFun Micro OLED
// Setup Micro OLED
void isSetupMicroOLED() {

  // Initialize the OLED
  oled.begin();
  // Clear the display's internal memory
  oled.clear(ALL);
  // Display what's in the buffer (splashscreen)
  oled.display();

  // Delay 1000 ms
  delay(1000);

  // Clear the buffer.
  oled.clear(PAGE);
  
}
// Micro OLED
void isMicroOLED() {

  // Text Display FreeIMU
  // Clear the display
  oled.clear(PAGE);
  // Set cursor to top-left
  oled.setCursor(0, 0);
  // Set font to type 0
  oled.setFontType(0);
  // FreeIMU
  oled.print("FreeIMU");
  oled.setCursor(0, 12);
  // Yaw
  oled.print("Y: ");
  oled.print(Yaw);
  oled.setCursor(0, 25);
  // Pitch
  oled.print("P: ");
  oled.print(Pitch);
  oled.setCursor(0, 39);
  // Roll
  oled.print("R: ");
  oled.print(Roll);
  oled.display();

}

setup.ino

// Setup
void setup() {

  // Give display time to power on
  delay(100);
  
  // Set up I2C bus
  Wire.begin();

  // Setup Micro OLED
  isSetupMicroOLED();

  // Pause
  delay(5);
  // Initialize IMU
  my3IMU.init();
  // Pause
  delay(5);

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Machine Learning
  • RTOS
  • Research & Development (R & D)

Instructor, E-Mentor, STEAM, and Arts-Based Training

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics

Follow Us

Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/

Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #25 – Movement – Quaternion – Mk06

——

#DonLucElectronics #DonLuc #SparkFunRedBoard #Movement #MPU9150 #9DOF #Quaternion #Magnetometer #Accelerometer #Gyroscope #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant

——

Quaternion

——

Quaternion

——

Quaternion

——

Quaternion

In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space, as the quotient of two vectors. Multiplication of quaternions is noncommutative.

Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, and crystallographic texture analysis. They can be used alongside other methods of rotation, such as Euler angles and rotation matrices, or as an alternative to them, depending on the application.

SparkFun 9 Degrees of Freedom Breakout – MPU-9150

The SparkFun 9DOF MPU-9150 is the world’s first 9-axis MotionTracking MEMS device designed for the low power, low cost, and high performance requirements of consumer electronics equipment including smartphones, tablets and wearable sensors. And guess what? You get to play with it.

This breakout board makes it easy to prototype with the InvenSense MPU-9150 by breaking out all the pins you need to standard 0.1″ spaced headers. The board also provides I2C pullup resistors and a solder jumper to switch the I2C address of the device.

The MPU-9150 is a System in Package (SiP) that combines two chips: the MPU-6050, which contains a 3-axis gyroscope, 3-axis accelerometer, and an onboard Digital Motion Processor™ (DMP™) capable of processing complex MotionFusion algorithms; and the AK8975, a 3-axis digital compass. The part’s integrated 6-axis MotionFusion algorithms access all internal sensors to gather a full set of sensor data.

DL2211Mk02

1 x SparkFun RedBoard Qwiic
1 x SparkFun 9 Degrees of Freedom Breakout – MPU-9150
1 x SparkFun Cerberus USB Cable

SparkFun RedBoard Qwiic

SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND

——

DL2211Mk02p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #25 - Movement - Quaternion - Mk06
25-06
DL2211Mk02p.ino
1 x SparkFun RedBoard Qwiic
1 1 x SparkFun 9 Degrees of Freedom Breakout - MPU-9150
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Two Wire Interface (TWI/I2C)
#include <Wire.h>
// I2CDev I2C utilities
#include "I2Cdev.h"
// MPU9150Lib 9-axis fusion
#include "MPU9150Lib.h"
// CalLib magnetometer and accelerometer calibration
#include "CalLib.h"
// Motion Driver InvenSense Embedded SDK v5.1
#include <dmpKey.h>
#include <dmpmap.h>
#include <inv_mpu.h>
#include <inv_mpu_dmp_motion_driver.h>
// EEPROM Magnetometer and Accelerometer data is stored
#include <EEPROM.h>

// the MPU object
MPU9150Lib MPU;
//  MPU_UPDATE_RATE defines the rate (in Hz)
// at which the MPU updates the sensor data and DMP output
#define MPU_UPDATE_RATE  (20)
//  MAG_UPDATE_RATE defines the rate (in Hz) at which the
// MPU updates the magnetometer data
//  MAG_UPDATE_RATE should be less than or equal to the MPU_UPDATE_RATE
#define MAG_UPDATE_RATE  (10)
//  MPU_MAG_MIX defines the influence that the magnetometer has on the yaw output.
//  The magnetometer itself is quite noisy so some mixing with the gyro yaw can help
//  significantly. Some example values are defined below:
// Just use gyro yaw
#define  MPU_MAG_MIX_GYRO_ONLY          0
// Just use magnetometer and no gyro yaw
#define  MPU_MAG_MIX_MAG_ONLY           1
// A good mix value 
#define  MPU_MAG_MIX_GYRO_AND_MAG       10
// mainly gyros with a bit of mag correction
#define  MPU_MAG_MIX_GYRO_AND_SOME_MAG  50
//  MPU_LPF_RATE is the low pas filter rate and can be between 5 and 188Hz
#define MPU_LPF_RATE   5

// This is our earth frame gravity vector - quaternions and vectors
MPUQuaternion gravity;                                     

//  SERIAL_PORT_SPEED defines the speed to use for the debug serial port
#define  SERIAL_PORT_SPEED  115200

// Software Version Information
String sver = "25-06";

void loop() {

  // MPU
  isMPU();
  
}

getMPU.ino

// MPU
// Setup MPU
void isSetupMPU() {

  // MPU
  MPU.init(MPU_UPDATE_RATE, MPU_MAG_MIX_GYRO_AND_MAG, MAG_UPDATE_RATE, MPU_LPF_RATE);     // start the MPU

  // Set up the initial gravity vector for quaternion rotation
  // Max value down the z axis
  gravity[QUAT_W] = 0;
  gravity[QUAT_X] = 0;
  gravity[QUAT_Y] = 0;
  gravity[QUAT_Z] = SENSOR_RANGE;
  
}
// MPU
void isMPU() {

  // Quaternion
  // This is our body frame gravity vector
  MPUQuaternion rotatedGravity;
  // This is the conjugate of the fused quaternion
  MPUQuaternion fusedConjugate;
  // Used in the rotation
  MPUQuaternion qTemp;
  // The accelerations
  MPUVector3 result;

  // Get the latest data
  if (MPU.read()) {
    
    // Need this for the rotation
    MPUQuaternionConjugate(MPU.m_fusedQuaternion, fusedConjugate);
    
    // Rotate the gravity vector into the body frame
    MPUQuaternionMultiply(gravity, MPU.m_fusedQuaternion, qTemp);
    MPUQuaternionMultiply(fusedConjugate, qTemp, rotatedGravity);
    
    // Now subtract rotated gravity from the body accels to get real accelerations.
    // Note that signs are reversed to get +ve acceleration results
    // in the conventional axes.
    result[VEC3_X] = -(MPU.m_calAccel[VEC3_X] - rotatedGravity[QUAT_X]);
    result[VEC3_Y] = -(MPU.m_calAccel[VEC3_Y] - rotatedGravity[QUAT_Y]);
    result[VEC3_Z] = -(MPU.m_calAccel[VEC3_Z] - rotatedGravity[QUAT_Z]);
    
    // print the residual accelerations
    MPU.printVector(result);
    Serial.println();
    
  }

}

setup.ino

// Setup
void setup() {

  // Serial
  Serial.begin(SERIAL_PORT_SPEED);
  Serial.println("Accel9150 starting");
  
  // Give display time to power on
  delay(100);
  
  // Set up I2C bus
  Wire.begin();

  // Setup MPU
  isSetupMPU();

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Machine Learning
  • RTOS
  • Research & Development (R & D)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics

Follow Us

Luc Paquin – Curriculum Vitae – 2023
https://www.donluc.com/luc/

Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #25 – Movement – IMU – Mk05

——

#DonLucElectronics #DonLuc #SparkFunRedBoard #Movement #Magnetometer #Accelerometer #Gyroscope #9DOF #Barometer #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant

——

——

IMU

——

IMU

——

Inertial Measurement Unit

An inertial measurement unit (IMU) is an electronic device that measures and reports a body’s specific force, angular rate, and sometimes the orientation of the body, using a combination of accelerometers, gyroscopes, and sometimes magnetometers. When the magnetometer is included, IMUs are referred to as IMMUs. IMUs are typically used to maneuver modern vehicles including motorcycles, missiles, aircraft, including unmanned aerial vehicles, among many others, and spacecraft, including satellites and landers. Recent developments allow for the production of IMU-enabled GPS devices. An IMU allows a GPS receiver to work when GPS-signals are unavailable, such as in tunnels, inside buildings, or when electronic interference is present.

AltIMU-10 v5 Gyro, Accelerometer, Compass, and Altimeter (LSM6DS33, LIS3MDL, and LPS25H Carrier)

The Pololu AltIMU-10 v5 is an inertial measurement unit (IMU) and altimeter that features the same LSM6DS33 gyro and accelerometer and LIS3MDL magnetometer as the MinIMU-9 v5, and adds an LPS25H digital barometer. An I²C interface accesses ten independent pressure, rotation, acceleration, and magnetic measurements that can be used to calculate the sensor’s altitude and absolute orientation. The board operates from 2.5 to 5.5 V and has a 0.1″ pin spacing.

DL2211Mk01

1 x SparkFun RedBoard Qwiic
1 x SparkFun Micro OLED (Qwiic)
1 x Qwiic Cable – 100mm
1 x Pololu AltIMU-10 v5
1 x SparkFun Cerberus USB Cable

SparkFun RedBoard Qwiic

SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND

——

DL2211Mk01p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #25 - Movement - IMU - Mk05
25-05
DL2211Mk01p.ino
1 x SparkFun RedBoard Qwiic
1 x SparkFun Micro OLED (Qwiic)
1 x Qwiic Cable - 100mm
1 x Pololu AltIMU-10 v5
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Two Wire Interface (TWI/I2C)
#include <Wire.h>
// SparkFun Micro OLED
#include <SFE_MicroOLED.h>
// Includes and variables for IMU integration
// STMicroelectronics LSM6DS33 gyroscope and accelerometer
#include <LSM6.h>
// STMicroelectronics LIS3MDL magnetometer
#include <LIS3MDL.h>
// STMicroelectronics LPS25H digital barometer
#include <LPS.h>

// 9DoF IMU
// STMicroelectronics LSM6DS33 gyroscope and accelerometer
LSM6 imu;
// Accelerometer and Gyroscopes
// Accelerometer
int imuAX;
int imuAY;
int imuAZ;
// Gyroscopes 
int imuGX;
int imuGY;
int imuGZ;
// STMicroelectronics LIS3MDL magnetometer
LIS3MDL mag;
// Magnetometer
int magX;
int magY;
int magZ;
// STMicroelectronics LPS25H digital barometer
LPS ps;
// Digital Barometer
float pressure;
float altitude;
float temperature;

// SparkFun Micro OLED
#define PIN_RESET 9
#define DC_JUMPER 1
// I2C declaration
MicroOLED oled(PIN_RESET, DC_JUMPER);

// Software Version Information
String sver = "25-05";

void loop() {

  // Accelerometer and Gyroscopes
  isIMU();

  // Magnetometer
  isMag();

  // Barometer
  isBarometer();
  
  // Micro OLED
  isMicroOLED();

}

getAccelGyro.ino

// Accelerometer and Gyroscopes
// Setup IMU
void setupIMU() {

  // Setup IMU
  imu.init();
  // Default
  imu.enableDefault();
  
}
// Accelerometer and Gyroscopes
void isIMU() {

  // Accelerometer and Gyroscopes
  imu.read();
  // Accelerometer x, y, z
  imuAX = imu.a.x;
  imuAY = imu.a.y;
  imuAZ = imu.a.z;
  // Gyroscopes x, y, z
  imuGX = imu.g.x;
  imuGY = imu.g.y;
  imuGZ = imu.g.z;

}

getBarometer.ino

// STMicroelectronics LPS25H digital barometer
// Setup Barometer
void isSetupBarometer(){

  // Setup Barometer
  ps.init();
  // Default
  ps.enableDefault();
  
}
// Barometer
void isBarometer(){

  // Barometer
  pressure = ps.readPressureMillibars();
  // Altitude Meters
  altitude = ps.pressureToAltitudeMeters(pressure);
  // Temperature Celsius
  temperature = ps.readTemperatureC();
  
}

getMagnetometer.ino

// Magnetometer
// Setup Magnetometer
void setupMag() {

  // Setup Magnetometer
  mag.init();
  // Default
  mag.enableDefault();
  
}
// Magnetometer
void isMag() {

  // Magnetometer
  mag.read();
  // Magnetometer x, y, z
  magX = mag.m.x;
  magY = mag.m.y;
  magZ = mag.m.z;
  
}

getMicroOLED.ino

// SparkFun Micro OLED
// Setup Micro OLED
void isSetupMicroOLED() {

  // Initialize the OLED
  oled.begin();
  // Clear the display's internal memory
  oled.clear(ALL);
  // Display what's in the buffer (splashscreen)
  oled.display();

  // Delay 1000 ms
  delay(1000);

  // Clear the buffer.
  oled.clear(PAGE);
  
}
// Micro OLED
void isMicroOLED() {

  // Text Display Accelerometer
  // Clear the display
  oled.clear(PAGE);
  // Set cursor to top-left
  oled.setCursor(0, 0);
  // Set font to type 0
  oled.setFontType(0);
  // Accelerometer
  oled.print("Acceler");
  oled.setCursor(0, 12);
  // X
  oled.print("X: ");
  oled.print(imuAX);
  oled.setCursor(0, 25);
  // Y
  oled.print("Y: ");
  oled.print(imuAY);
  oled.setCursor(0, 39);
  // Z
  oled.print("Z: ");
  oled.print(imuAZ);
  oled.display();

  // Delay
  delay(3000);

  // Text Display Gyroscopes
  // Clear the display
  oled.clear(PAGE);
  // Set cursor to top-left
  oled.setCursor(0, 0);
  // Set font to type 0
  oled.setFontType(0);
  // Gyroscopes
  oled.print("Gyro");
  oled.setCursor(0, 12);
  // X
  oled.print("X: ");
  oled.print(imuGX);
  oled.setCursor(0, 25);
  // Y
  oled.print("Y: ");
  oled.print(imuGY);
  oled.setCursor(0, 39);
  // Z
  oled.print("Z: ");
  oled.print(imuGZ);
  oled.display();

  // Delay
  delay(3000);

  // Text Display Magnetometer
  // Clear the display
  oled.clear(PAGE);
  // Set cursor to top-left
  oled.setCursor(0, 0);
  // Set font to type 0
  oled.setFontType(0);
  // Magnetometer
  oled.print("Mag");
  oled.setCursor(0, 12);
  // X
  oled.print("X: ");
  oled.print(magX);
  oled.setCursor(0, 25);
  // Y
  oled.print("Y: ");
  oled.print(magY);
  oled.setCursor(0, 39);
  // Z
  oled.print("Z: ");
  oled.print(magZ);
  oled.display();

  // Delay
  delay(3000);

  // Text Display Barometer
  // Clear the display
  oled.clear(PAGE);
  // Set cursor to top-left
  oled.setCursor(0, 0);
  // Set font to type 0
  oled.setFontType(0);
  // Barometer
  oled.print("Baro");
  oled.setCursor(0, 12);
  // Pressure
  oled.print("P: ");
  oled.print(pressure);
  oled.setCursor(0, 25);
  // Altitude Meters
  oled.print("A: ");
  oled.print(altitude);
  oled.setCursor(0, 39);
  // Temperature Celsius
  oled.print("T: ");
  oled.print(temperature);
  oled.display();

  // Delay
  delay(3000);

}

setup.ino

// Setup
void setup() {

  // Give display time to power on
  delay(100);
  
  // Set up I2C bus
  Wire.begin();

  // Setup Micro OLED
  isSetupMicroOLED();

  // Setup IMU
  setupIMU();

  // Setup Magnetometer
  setupMag();

  // Setup Barometer
  isSetupBarometer();

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Machine Learning
  • RTOS
  • Research & Development (R & D)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics

Follow Us

Luc Paquin – Curriculum Vitae – 2022
https://www.donluc.com/luc/

Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #25 – Movement – 9-DOF – Mk04

——

#DonLucElectronics #DonLuc #SparkFunRedBoard #Movement #9DOF #Accelerometer #Magnetometer #Gyroscope #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant

——

9-DOF

——

9-DOF

——

9-DOF

——

Roll, Pitch, and Yaw

How is Controlling an Airplane or Robotic Different than Controlling a Car or Boat?

Stability and control are much more complex for an airplane, which can move freely in three dimensions, than for cars or boats, which only move in two. A change in any one of the three types of motion affects the other two.

Imagine three lines running through an airplane and intersecting at right angles at the airplane’s center of gravity.

  • Rotation around the front-to-back axis is called Roll.
  • Rotation around the side-to-side axis is called Pitch.
  • Rotation around the vertical axis is called Yaw.

SparkFun 9 Degrees of Freedom – Sensor Stick

The SparkFun 9DOF Sensor Stick is a very small sensor board with 9 degrees of freedom. It includes the ADXL345 accelerometer, the HMC5883L magnetometer, and the ITG-3200 MEMS gyro. The “Stick” has a simple I2C interface and a mounting hole for attaching it to your project. Also, the board is a mere allowing it to be easily mounted in just about any application.

DL2210Mk08

1 x SparkFun RedBoard Qwiic
1 x SparkFun Micro OLED (Qwiic)
1 x Qwiic Cable – 100mm
1 x SparkFun 9 Degrees of Freedom – Sensor Stick
1 x SparkFun Cerberus USB Cable

SparkFun RedBoard Qwiic

SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND

——

DL2210Mk08p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #25 - Movement - 9-DOF - Mk04
25-04
DL2210Mk06p.ino
1 x SparkFun RedBoard Qwiic
1 x SparkFun Micro OLED (Qwiic)
1 x Qwiic Cable - 100mm
1 x SparkFun 9 Degrees of Freedom - Sensor Stick
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Two Wire Interface (TWI/I2C)
#include <Wire.h>
// SparkFun Micro OLED
#include <SFE_MicroOLED.h>
// Includes and variables for IMU integration
// Accelerometer
#include <ADXL345.h>
// Magnetometer
#include <HMC58X3.h>
// MEMS Gyroscope
#include <ITG3200.h>
// Debug
#include "DebugUtils.h"
// FreeIMU
#include <CommunicationUtils.h>
#include <FreeIMU.h>

// Set the FreeIMU object
FreeIMU my3IMU = FreeIMU();

// Yaw Pitch Roll
float ypr[3];
float Yaw = 0;
float Pitch = 0;
float Roll = 0;

// SparkFun Micro OLED
#define PIN_RESET 9
#define DC_JUMPER 1
// I2C declaration
MicroOLED oled(PIN_RESET, DC_JUMPER);

// Software Version Information
String sver = "25-04";

void loop() {

  // isFreeIMU
  isFreeIMU();
  
  // Micro OLED
  isMicroOLED();

  // One delay in between reads
  delay(1000);
  
}

getFreeIMU.ino

// FreeIMU
// isFreeIMU
void isFreeIMU(){

  // FreeIMU
  // Yaw Pitch Roll
  my3IMU.getYawPitchRoll(ypr);
  // Yaw
  Yaw = ypr[0];
  // Pitch
  Pitch = ypr[1];
  // Roll
  Roll = ypr[2];

}

getMicroOLED.ino

// SparkFun Micro OLED
// Setup Micro OLED
void isSetupMicroOLED() {

  // Initialize the OLED
  oled.begin();
  // Clear the display's internal memory
  oled.clear(ALL);
  // Display what's in the buffer (splashscreen)
  oled.display();

  // Delay 1000 ms
  delay(1000);

  // Clear the buffer.
  oled.clear(PAGE);
  
}
// Micro OLED
void isMicroOLED() {

  // Text Display FreeIMU
  // Clear the display
  oled.clear(PAGE);
  // Set cursor to top-left
  oled.setCursor(0, 0);
  // Set font to type 0
  oled.setFontType(0);
  // FreeIMU
  oled.print("FreeIMU");
  oled.setCursor(0, 12);
  // Yaw
  oled.print("Y: ");
  oled.print(Yaw);
  oled.setCursor(0, 25);
  // Pitch
  oled.print("P: ");
  oled.print(Pitch);
  oled.setCursor(0, 39);
  // Roll
  oled.print("R: ");
  oled.print(Roll);
  oled.display();

}

setup.ino

// Setup
void setup() {

  // Give display time to power on
  delay(100);
  
  // Set up I2C bus
  Wire.begin();

  // Setup Micro OLED
  isSetupMicroOLED();

  // Pause
  delay(5);
  // Initialize IMU
  my3IMU.init();
  // Pause
  delay(5);

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Machine Learning
  • RTOS
  • Research & Development (R & D)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics

Follow Us

Luc Paquin – Curriculum Vitae – 2022
https://www.donluc.com/luc/

Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #25 – Movement – Gyroscope L3G4200D – Mk03

——

#DonLucElectronics #DonLuc #SparkFunRedBoard #Movement #Gyroscope #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant

——

Gyroscope

——

Gyroscope

——

Gyroscope

——

Gyroscope

A gyroscope is a device used for measuring or maintaining orientation and angular velocity.It is a spinning wheel or disc in which the axis of rotation is free to assume any orientation by itself. When rotating, the orientation of this axis is unaffected by tilting or rotation of the mounting, according to the conservation of angular momentum.

Gyroscopes based on other operating principles also exist, such as the microchip-packaged MEMS gyroscopes found in electronic devices, solid-state ring lasers, fibre optic gyroscopes, and the extremely sensitive quantum gyroscope. MEMS gyroscopes are popular in some consumer electronics, such as smartphones.

SparkFun Tri-Axis Gyro Breakout – L3G4200D

This is a breakout board for the L3G4200D low-power three-axis angular rate sensor. The L3G4200D is a MEMS motion sensor and has a full scale of ±250 or ±500 or ±2000 dps and is capable of measuring rates with a user selectable bandwidth. These work great in gaming and virtual reality input devices, GPS navigation systems and robotics.

DL2210Mk07

1 x SparkFun RedBoard Qwiic
1 x SparkFun Micro OLED (Qwiic)
1 x Qwiic Cable – 100mm
1 x SparkFun Tri-Axis Gyro Breakout – L3G4200D
1 x SparkFun Cerberus USB Cable

SparkFun RedBoard Qwiic

SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND

DL2210Mk07p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #25 - Movement - Gyroscope L3G4200D - Mk03
25-02
DL2210Mk06p.ino
1 x SparkFun RedBoard Qwiic
1 x SparkFun Micro OLED (Qwiic)
1 x Qwiic Cable - 100mm
1 x SparkFun Tri-Axis Gyro Breakout - L3G4200D
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Two Wire Interface (TWI/I2C)
#include <Wire.h>
// SparkFun Micro OLED
#include <SFE_MicroOLED.h>
// Gyroscope
#include <L3G4200D.h>

// Gyroscope
L3G4200D gyroscope;

// Timers
unsigned long timer = 0;
float timeStep = 0.01;

// Pitch, Roll and Yaw values
float pitch = 0;
float roll = 0;
float yaw = 0;

// SparkFun Micro OLED
#define PIN_RESET 9
#define DC_JUMPER 1
// I2C declaration
MicroOLED oled(PIN_RESET, DC_JUMPER);

// Software Version Information
String sver = "25-03";

void loop() {

  // Gyroscope
  isGyroscope(),
  
  // Micro OLED
  isMicroOLED();

  // Wait to full timeStep period
  delay((timeStep*1000) - (millis() - timer));
  
}

getGyroscope.ino

// L3G4200D Triple Axis Gyroscope
// Setup Gyroscope
void isSetupGyroscope() {

  // Setup Gyroscope
  // Set scale 2000 dps and 400HZ Output data rate (cut-off 50)
  while(!gyroscope.begin(L3G4200D_SCALE_2000DPS, L3G4200D_DATARATE_400HZ_50))
  {
    // Could not find a valid L3G4200D sensor, check wiring!
    delay(500);
    
  }

  // Calibrate gyroscope. The calibration must be at rest.
  // If you don't want calibrate, comment this line.
  gyroscope.calibrate(100);
  
}
// L3G4200D Gyroscope
void isGyroscope(){

  // Timer
  timer = millis();

  // Read normalized values
  Vector norm = gyroscope.readNormalize();

  // Calculate Pitch, Roll and Yaw
  pitch = pitch + norm.YAxis * timeStep;
  roll = roll + norm.XAxis * timeStep;
  yaw = yaw + norm.ZAxis * timeStep;

}

getMicroOLED.ino

// SparkFun Micro OLED
// Setup Micro OLED
void isSetupMicroOLED() {

  // Initialize the OLED
  oled.begin();
  // Clear the display's internal memory
  oled.clear(ALL);
  // Display what's in the buffer (splashscreen)
  oled.display();

  // Delay 1000 ms
  delay(1000);

  // Clear the buffer.
  oled.clear(PAGE);
  
}
// Micro OLED
void isMicroOLED() {

  // Text Display Gyroscope
  // Clear the display
  oled.clear(PAGE);
  // Set cursor to top-left
  oled.setCursor(0, 0);
  // Set font to type 0
  oled.setFontType(0);
  // Gyroscope
  oled.print("Gyro");
  oled.setCursor(0, 12);
  // X
  oled.print("Pit: ");
  oled.print(pitch);
  oled.setCursor(0, 25);
  // Y
  oled.print("Rol: ");
  oled.print(roll);
  oled.setCursor(0, 39);
  // Z
  oled.print("Yaw: ");
  oled.print(yaw);
  oled.display();

}

setup.ino

// Setup
void setup() {

  // Give display time to power on
  delay(100);
  
  // Set up I2C bus
  Wire.begin();

  // Setup Micro OLED
  isSetupMicroOLED();

  // L3G4200D Gyroscope
  isSetupGyroscope();

}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Machine Learning
  • RTOS
  • Research & Development (R & D)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics

Follow Us

Luc Paquin – Curriculum Vitae – 2022
https://www.donluc.com/luc/

Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Project #25 – Movement – Accelerometer ADXL335 – Mk02

——

#DonLucElectronics #DonLuc #SparkFunRedBoard #Movement #Accelerometer #Arduino #Project #Fritzing #Programming #Electronics #Microcontrollers #Consultant

——

Accelerometer ADXL335

——

Accelerometer ADXL335

——

Accelerometer ADXL335

——

Accelerometer

An accelerometer is a tool that measures proper acceleration. Proper acceleration is the acceleration of a body in its own instantaneous rest frame, this is different from coordinate acceleration, which is acceleration in a fixed coordinate system. For example, an accelerometer at rest on the surface of the Earth will measure an acceleration due to Earth’s gravity, straight upwards 9.81 m/s2. By contrast, accelerometers in free fall, falling toward the center of the Earth at a rate of about 9.81 m/s2, will measure zero.

Accelerometers have many uses in industry and science. Highly sensitive accelerometers are used in inertial navigation systems for aircraft and missiles. Vibration in rotating machines is monitored by accelerometers. They are used in tablet computers and digital cameras so that images on screens are always displayed upright. In unmanned aerial vehicles, accelerometers help to stabilise flight. Micromachined microelectromechanical systems accelerometers are increasingly present in portable electronic devices and video-game controllers, to detect changes in the positions of these devices.

SparkFun Triple Axis Accelerometer Breakout – ADXL335

Breakout board for the 3 axis ADXL335 from Analog Devices. This is the latest in a long, proven line of analog sensors, the holy grail of accelerometers. The ADXL335 is a triple axis MEMS accelerometer with extremely low noise and power consumption, only 320uA. The sensor has a full sensing range of +/-3g. There is no on-board regulation, provided power should be between 1.8 and 3.6VDC. Board comes fully assembled and tested with external components installed. The included 0.1uF capacitors set the bandwidth of each axis to 50Hz.

DL2210Mk06

1 x SparkFun RedBoard Qwiic
1 x SparkFun Micro OLED (Qwiic)
1 x Qwiic Cable – 100mm
1 x SparkFun Triple Axis Accelerometer Breakout – ADXL335
1 x SparkFun Cerberus USB Cable

SparkFun RedBoard Qwiic

ACX – Analog A0
ACY – Analog A1
ACZ – Analog A2
SDA – Analog A4
SCL – Analog A5
VIN – +3.3V
GND – GND

——

DL2210Mk06p.ino

/* ***** Don Luc Electronics © *****
Software Version Information
Project #25 - Movement - Accelerometer ADXL335 - Mk02
25-02
DL2210Mk06p.ino
1 x SparkFun RedBoard Qwiic
1 x SparkFun Micro OLED (Qwiic)
1 x Qwiic Cable - 100mm
1 x SparkFun Triple Axis Accelerometer Breakout - ADXL335
1 x SparkFun Cerberus USB Cable
*/

// Include the Library Code
// Two Wire Interface (TWI/I2C)
#include <Wire.h>
// SparkFun Micro OLED
#include <SFE_MicroOLED.h>

// Accelerometer
int iX = A0;
int iY = A1;
int iZ = A2;
// Accelerometer
int X = 0;
int Y = 0;
int Z = 0;

// SparkFun Micro OLED
#define PIN_RESET 9
#define DC_JUMPER 1
// I2C declaration
MicroOLED oled(PIN_RESET, DC_JUMPER);

// Software Version Information
String sver = "25-02";

void loop() {

  // Accelerometer
  isAccelerometer(),
  
  // Micro OLED
  isMicroOLED();

  // One delay in between reads
  delay(1000);
  
}

getAccelerometer.ino

// Accelerometer
// Accelerometer
void isAccelerometer(){

  // Accelerometer X, Y, Z
  // X
  X = analogRead(iX);
  // Y
  Y = analogRead(iY);
  // Z
  Z = analogRead(iZ);

}

getMicroOLED.ino

// SparkFun Micro OLED
// Setup Micro OLED
void isSetupMicroOLED() {

  // Initialize the OLED
  oled.begin();
  // Clear the display's internal memory
  oled.clear(ALL);
  // Display what's in the buffer (splashscreen)
  oled.display();

  // Delay 1000 ms
  delay(1000);

  // Clear the buffer.
  oled.clear(PAGE);
  
}
// Micro OLED
void isMicroOLED() {

  // Text Display Accelerometer
  // Clear the display
  oled.clear(PAGE);
  // Set cursor to top-left
  oled.setCursor(0, 0);
  // Set font to type 0
  oled.setFontType(0);
  // Magnetometer
  oled.print("Accel");
  oled.setCursor(0, 12);
  // X
  oled.print("X: ");
  oled.print(X);
  oled.setCursor(0, 25);
  // Y
  oled.print("Y: ");
  oled.print(Y);
  oled.setCursor(0, 39);
  // Z
  oled.print("Z: ");
  oled.print(Z);
  oled.display();

}

setup.ino

// Setup
void setup() {

  // Give display time to power on
  delay(100);
  
  // Set up I2C bus
  Wire.begin();

  // Setup Micro OLED
  isSetupMicroOLED();
  
}

——

People can contact us: https://www.donluc.com/?page_id=1927

Technology Experience

  • Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi,Espressif, etc…)
  • IoT
  • Wireless (Radio Frequency, Bluetooth, WiFi, Etc…)
  • Robotics
  • Camera and Video Capture Receiver Stationary, Wheel/Tank and Underwater Vehicle
  • Unmanned Vehicles Terrestrial and Marine
  • Machine Learning
  • RTOS
  • Research & Development (R & D)

Instructor and E-Mentor

  • IoT
  • PIC Microcontrollers
  • Arduino
  • Raspberry Pi
  • Espressif
  • Robotics

Follow Us

Luc Paquin – Curriculum Vitae – 2022
https://www.donluc.com/luc/

Web: https://www.donluc.com/
Facebook: https://www.facebook.com/neosteam.labs.9/
YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA
Twitter: https://twitter.com/labs_steam
Pinterest: https://www.pinterest.com/NeoSteamLabs/
Instagram: https://www.instagram.com/neosteamlabs/

Don Luc

Categories
Archives