Project #6: MicroView – Mk04

MicroView
Project #6 – Mk04

Trimpot – LED

1 x MicroView
1 x MicroView – USB Programmer
1 X Trimpot 10K with Knob
1 X Resistor 2.55k Ohm
1 X 3MM Low Current Red LED
6 x Jumper Wires 3″ M/M
1 x Half-Size Breadboard

05 pin – A2
08 pin – GND
11 pin – 2
15 pin – +5V

DonLuc1804Mk06d.ino

// ***** Don Luc *****
// Software Version Information
// 3.01
// DonLuc1804Mk06 4.04
// MicroView
// Trimpot - LED

// include the library code:
#include <MicroView.h>

// Potentiometer
int potPin = A2;    // select the input pin for the potentiometer
int ledPin = 2;   // select the pin for the LED
int potPot = 0;
String cap = "";

void loop() {

  // Potentiometer
  isCap();

  delay(500);
  uView.clear(PAGE);
  
}

getPot.ino

void isCap(){

    potPot = analogRead(potPin);    // read the value from the sensor
    cap = "Pot: ";
    cap.concat(potPot);
    
    uView.setFontType(0);
    uView.setCursor(0,20);
    uView.print( cap );
    uView.display();
    
}

setup.ino

void setup() {

  uView.begin();       // begin of MicroView
  uView.clear(ALL);    // erase hardware memory inside the OLED controller
  uView.display();     // display the content in the buffer memory, by default it is the MicroView logo
  delay(1000);
  uView.clear(PAGE);   // erase the memory buffer, when next uView.display() is called, the OLED will be cleared.

  uView.setFontType(1);
  uView.setCursor(0,20);
  uView.print("Don Luc");
  uView.display();
  delay(5000);

  uView.clear(PAGE);   // erase the memory buffer, when next uView.display() is called, the OLED will be cleared.

  uView.setFontType(0);
  uView.setCursor(0,20);
  uView.print("TrimpotLED");
  uView.display();
  delay(5000);
  
  uView.clear(PAGE);

  // ledPin
  pinMode(ledPin, OUTPUT);
  digitalWrite(ledPin, HIGH);  // turn the ledPin on

}

Don Luc

Project #6: MicroView – Mk03

MicroView
Project #6 – Mk03

1 x MicroView
1 x DS18S20
1 x Resistor 1.65k Ohm
3 x Jumper Wires 3″ M/M

08 pin – GND
11 pim – 2
15 pin – +5V

DonLuc1804Mk05b.ino

// ***** Don Luc *****
// Software Version Information
// 3.01
// DonLuc1804Mk05 3.01
// MicroView
// OneWire
// DS18S20

#include <MicroView.h>
#include <OneWire.h>
// Temperature chip i/o
int DS18S20_Pin = 2; //DS18S20 Signal pin on digital 2
OneWire ds(DS18S20_Pin);  // on digital pin 2
float temperature = 0;
String tempZ = "";

void loop() {

  // Temperature chip i/o
  temperatu();
  isTe();
      
	uView.setFontType(1);
	uView.setCursor(0,20);
	uView.print("Don Luc");
	uView.display();
	delay(1000);
  
	uView.clear(PAGE);
	
}

getTemperature.ino

float getTemp() {
  
  //returns the temperature from one DS18S20 in DEG Celsius
  byte data[12];
  byte addr[8];
 
  if ( !ds.search(addr)) {
      //no more sensors on chain, reset search
      ds.reset_search();
      return -1001;
  }
 
  if ( OneWire::crc8( addr, 7) != addr[7]) {
      return -1002;
  }
 
  if ( addr[0] != 0x10 && addr[0] != 0x28) {
      return -1003;
  }
 
  ds.reset();
  ds.select(addr);
  ds.write(0x44,1); // start conversion, with parasite power on at the end
 
  byte present = ds.reset();
  ds.select(addr);    
  ds.write(0xBE); // Read Scratchpad
 
  
  for (int i = 0; i < 9; i++) { // we need 9 bytes
    data[i] = ds.read();
  }
  
  ds.reset_search();
  
  byte MSB = data[1];
  byte LSB = data[0];
 
  float tempRead = ((MSB << 8) | LSB); //using two's compliment
  float TemperatureSum = tempRead / 16;
  
  return TemperatureSum;
 
}
 
void temperatu(){
  
  temperature = getTemp();
 
}
 
void isTe() {

  tempZ = "";
  uView.setFontType(1);
  uView.setCursor(0,10);
  uView.print("Celsius");
  uView.setCursor(0,30);  
  tempZ.concat(temperature);
  tempZ.concat("C");
  uView.print( tempZ );
  uView.display();
  delay(5000);

  uView.clear(PAGE);
  
}

setup.ino

void setup() {
  
  uView.begin();       // begin of MicroView
  uView.clear(ALL);    // erase hardware memory inside the OLED controller
  uView.display();     // display the content in the buffer memory, by default it is the MicroView logo
  delay(1000);
  uView.clear(PAGE);   // erase the memory buffer, when next uView.display() is called, the OLED will be cleared.

  uView.setFontType(1);
  uView.setCursor(0,20);
  uView.print("Don Luc");
  uView.display();
  delay(5000);

  uView.clear(PAGE);   // erase the memory buffer, when next uView.display() is called, the OLED will be cleared.

  uView.setFontType(1);
  uView.setCursor(0,20);
  uView.print("OneWire");
  uView.display();
  delay(5000);
  
  uView.clear(PAGE); 

  uView.setFontType(1);
  uView.setCursor(0,20);
  uView.print("DS18S20");
  uView.display();
  delay(5000);
  
  uView.clear(PAGE);
   
}

Don Luc

Project #6: MicroView – Mk02

DonLuc1804Mk04a.ino

// ***** Don Luc *****
// Software Version Information
// 2.01
// DonLuc1804Mk04 2.01
// MicroView

#include <MicroView.h>
#include <Time.h>
#include <TimeLib.h>
// This is the radius of the clock:
#define CLOCK_SIZE 23
// Use these defines to set the clock's begin time
#define HOUR 9
#define MINUTE 00
#define SECOND 00
#define DAY 9
#define MONTH 4
#define YEAR 2018
// LCD W/H
const uint8_t maxW = uView.getLCDWidth();
const uint8_t midW = maxW/2;
const uint8_t maxH = uView.getLCDHeight();
const uint8_t midH = maxH/2;
// Clock
long zzz = 0;
static boolean firstDraw = false;
static unsigned long mSec = millis() + 1000;
static float degresshour, degressmin, degresssec, hourx, houry, minx, miny, secx, secy;
  
void loop() {

  drawFace();
  
  zzz = 0;
  while(zzz < 5000)
  {

     drawTime();
     zzz++;
     
  }
  
  uView.clear(PAGE);
  
  firstDraw = false;
  
  uView.setFontType(0);
  uView.setCursor(0,20);
  uView.print("09/04/2018");
  uView.display();
  delay(5000);
  
  uView.clear(PAGE);

}

drawFace.ino

void drawFace()
{

  // Draw the clock face. That includes the circle outline and
  // the 12, 3, 6, and 9 text.
  uView.setFontType(0); // set font type 0 (Smallest)
  
  uint8_t fontW = uView.getFontWidth();
  uint8_t fontH = uView.getFontHeight();
  
  //uView.setCursor(27, 0); // points cursor to x=27 y=0
  uView.setCursor(midW-fontW-1, midH-CLOCK_SIZE+1);
  uView.print(12);  // Print the "12"
  uView.setCursor(midW-(fontW/2)-1, midH+CLOCK_SIZE-fontH-1);
  uView.print(6);  // Print the "6"
  uView.setCursor(midW-CLOCK_SIZE+1, midH-fontH/2);
  uView.print(9);  // Print the "9"
  uView.setCursor(midW+CLOCK_SIZE-fontW-2, midH-fontH/2);
  uView.print(3);  // Print the "3"
  uView.circle(midW-1, midH-1, CLOCK_SIZE);
  
  //Draw the clock
  uView.display();
  
}

drawTime.ino

void drawTime()
{
   
  // If mSec
  if (mSec != (unsigned long)second()) 
  {
    // First time draw requires extra line to set up XOR's:
    if (firstDraw) 
    {
      uView.line(midW, midH, 32 + hourx, 24 + houry, WHITE, XOR);
      uView.line(midW, midH, 32 + minx, 24 + miny, WHITE, XOR);
      uView.line(midW, midH, 32 + secx, 24 + secy, WHITE, XOR);
    }
    // Calculate hour hand degrees:
    degresshour = (((hour() * 360) / 12) + 270) * (PI / 180);
    // Calculate minute hand degrees:
    degressmin = (((minute() * 360) / 60) + 270) * (PI / 180);
    // Calculate second hand degrees:
    degresssec = (((second() * 360) / 60) + 270) * (PI / 180);

    // Calculate x,y coordinates of hour hand:
    hourx = cos(degresshour) * (CLOCK_SIZE / 2.5);
    houry = sin(degresshour) * (CLOCK_SIZE / 2.5);
    // Calculate x,y coordinates of minute hand:
    minx = cos(degressmin) * (CLOCK_SIZE / 1.4);
    miny = sin(degressmin) * (CLOCK_SIZE / 1.4);
    // Calculate x,y coordinates of second hand:
    secx = cos(degresssec) * (CLOCK_SIZE / 1.1);
    secy = sin(degresssec) * (CLOCK_SIZE / 1.1);

    // Draw hands with the line function:
    uView.line(midW, midH, midW+hourx, midH+houry, WHITE, XOR);
    uView.line(midW, midH, midW+minx, midH+miny, WHITE, XOR);
    uView.line(midW, midH, midW+secx, midH+secy, WHITE, XOR);
    
    // Set firstDraw flag to true, so we don't do it again.
    firstDraw = true;
    
    // Actually draw the hands with the display() function.
    uView.display();
    
  }

}

setup.ino

void setup() {

  // Set the time in the time library:
  setTime(HOUR, MINUTE, SECOND, DAY, MONTH, YEAR);
 
  uView.begin();       // begin of MicroView
  uView.clear(ALL);    // erase hardware memory inside the OLED controller
  uView.display();     // display the content in the buffer memory, by default it is the MicroView logo
  delay(1000);
  uView.clear(PAGE);   // erase the memory buffer, when next uView.display() is called, the OLED will be cleared.

  uView.setFontType(1);
  uView.setCursor(0,20);
  uView.print("Don Luc");
  uView.display();
  delay(5000);
  
  uView.clear(PAGE);

  uView.display();  // display the content in the buffer

  // Draw clock face (circle outline & text):
  drawFace();
  
}

Don Luc

Project #6: MicroView – Mk01

DonLuc1804Mk03b.ino

// ***** Don Luc *****
// Software Version Information
// 1.01
// DonLuc1804Mk03 1.01
// MicroView

#include <MicroView.h>

void loop() {

	uView.setFontType(0);
	uView.setCursor(0,20);
	uView.print("  Don Luc  ");
	uView.display();
	delay(5000);

	uView.clear(PAGE);

	uView.setFontType(1);
	uView.setCursor(0,20);
	uView.print("Don Luc");
	uView.display();
	delay(5000);
  
	uView.clear(PAGE);
	
}

setup.ino

void setup() {
  
  uView.begin();       // begin of MicroView
  uView.clear(ALL);    // erase hardware memory inside the OLED controller
  uView.display();     // display the content in the buffer memory, by default it is the MicroView logo
  delay(1000);
  uView.clear(PAGE);   // erase the memory buffer, when next uView.display() is called, the OLED will be cleared.
  
}

MicroView
Project #6 – Mk01

Don Luc

Project #5: Lamps – Mk01

DonLuc1804Mk02.ino

// ***** Don Luc *****
// Software Version Information
// 1.01
// DonLuc1804Mk02 1.01
// Lamps

#include <Adafruit_NeoPixel.h>
// Which pin on the Arduino is connected to the NeoPixels
// Pin connected => 6
#define PIN 6
// How many NeoPixels are attached to the Arduino
// NUMPIXELS => 4
#define NUMPIXELS 4
Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
// Panel Mount 1K potentiometer Bright
// Bright => A0
const int sensorBright = A0;
int sBright = 0;
int brightVal = 0;         // the sensor value
int brightMin = 0;        // minimum sensor value
int brightMax = 0;           // maximum sensor value
// Panel Mount 1K potentiometer
// Delay => A1
const int sensorDelay = A1;
long delayVal = 0;
// Rotary Switch - 10 Position
// Number => A2 (0 => 9)
const int sensorNumber = A2;
// Panel Mount 1K potentiometer
// Red - Led
const int sensorRed = 9;
int red = 0;
int redMin = 0;
int redMax = 0;
// Panel Mount 1K potentiometer
// Green - Led
const int sensorGreen = 8;
int green = 0;
int greenMin = 0;
int greenMax = 0;
// Panel Mount 1K potentiometer
// Blue - Led
const int sensorBlue = 7;
int blue = 0;
int blueMin = 0;
int blueMax = 0;
// variables:
//int x = 0;
int y = 0;
int z = 0;

void loop() {

  number();

}

bright.ino

void bright(){

    switch (sBright) {
        case 1:
            brightVal = 255;
            break;
         default:
            // read the sensor:
            brightVal = analogRead(sensorBright);
            // apply the calibration to the sensor reading
            brightVal = map(brightVal, brightMin, brightMax, 0, 255);        
            // in case the sensor value is outside the range seen during calibration
            brightVal = constrain(brightVal, 0, 255);
            break;
    }
  
}

iled.ino

void iled() {

   // red
   red = analogRead(sensorRed); 
   // apply the calibration to the sensor reading red
   red = map(red, redMin, redMax, 0, 255);
   // in case the sensor value is outside the range seen during calibration
   red = constrain(red, 0, 255);
   // green
   green = analogRead(sensorGreen); 
   // apply the calibration to the sensor reading red
   green = map(green, greenMin, greenMax, 0, 255);
   // in case the sensor value is outside the range seen during calibration
   green = constrain(green, 0, 255);
   // blue
   blue = analogRead(sensorBlue); 
   // apply the calibration to the sensor reading red
   blue = map(blue, blueMin, blueMax, 0, 255);
   // in case the sensor value is outside the range seen during calibration
   blue = constrain(blue, 0, 255);
                 
}

neopix.ino

void neopix() {
  
  for(int i=0; i<NUMPIXELS; i++){

    // bright
    bright();   
    pixels.setBrightness( brightVal );
    // pixels.Color takes RGB values, from 0,0,0 up to 255,255,255    
    pixels.setPixelColor(i, pixels.Color(red,green,blue));
    // show
    pixels.show(); // This sends the updated pixel color to the hardware.
    // delay
    delay(50); // Delay for a period of time (in milliseconds).
    
  }
  
}

neopixt.ino

void neopixt() {
  
  for(int i=4; i<NUMPIXELS; i--){

    // bright
    bright();   
    pixels.setBrightness( brightVal );
    // pixels.Color takes RGB values, from 0,0,0 up to 255,255,255    
    pixels.setPixelColor(i, pixels.Color(red,green,blue));
    // show
    pixels.show(); // This sends the updated pixel color to the hardware.
    // delay
    delay(50); // Delay for a period of time (in milliseconds).
    
  }
  
}

number.ino

void number(){

  z = analogRead(sensorNumber);
  y = (z / 127);

  sBright = 20000;
  
  // range value:
  switch (y) {
    case  0:
      // Led
      iled();
      // neopix
      neopix();
      // delay
      delayVal = (0);     
      break;
    case 1:
      // Led
      iled();
      // neopix
      neopix();
      // delay
      sdelay();
      break;
    case 2:
      // Led
      iled();
      // neopixt
      neopixt();
      // delay
      sdelay();
      break;
    case 3:
      // White
      red = 255;
      green = 255;
      blue = 255; 
      // neopix       
      neopix();
      // delay
      delayVal = (0);
      break;  
    case 4:
      // Green
      red = 0;
      green = 255;
      blue = 0;
      // neopix        
      neopix();
      // delay
      delayVal = (0);
      break;
    case 5:
      // Red
      red = 255;
      green = 0;
      blue = 0;        
      // neopix        
      neopix();
      // delay
      delayVal = (0);
      break;
    case 6:
      // White
      red = 255;
      green = 255;
      blue = 255; 
      // neopix       
      neopix();
      // delay
      sdelay();
      break;       
    case 7:
      // Green
      red = 0;
      green = 255;
      blue = 0; 
      // neopix       
      neopix();
      // delay
      sdelay();
      break; 
    case 8:
      // Red
      red = 255;
      green = 0;
      blue = 0; 
      // neopix       
      neopix();
      // delay
      sdelay();
      break; 
    case 9:

      break;
  }
  
}

sdelay.ino

void sdelay() {

    delayVal = analogRead(sensorDelay);
    delayVal = (250 * delayVal);
      
}

setup.ino

void setup() {
  
    pixels.begin(); // This initializes the NeoPixel library.
    
}

Don Luc

Nixie Clock

“All-In-One” Arduino Nixie Clock

Detailed Description

The Arduino “All-In-One” Nixie Clock kit drives 6 IN-14 Nixie Tubes in a traditional “6 in a row” set up. It’s packed full of features, and at the end of the simple build you will have a beautiful IN-14 Nixie Clock. The board is small (150mm x 50mm), and is an easy to build and is a tried and tested design, with many hundreds of units sold.

This kit is based on an Arduino (Atmel ATMega) micro controller. You don’t need to own an Arduino to use this kit! It is self contained and runs without an external Arduino board.

The controller comes pre-programmed. You you can download, modify and upload the open source code if you wish.

This kit is ideal if you want to make an unusual or eye catching clock in a custom case.

Even better: The code is open source, with regular updates and new features.

WiFi Time Provider

If you already have a Clock with the battery-backed RTC (Real Time Clock) module, you can easily upgrade it to use the WiFi time provider module.

This gives you all the advantages of the WiFi kit. You need to have firmware V44 or later to use this.

You set the WiFi provider once once, and it never needs setting again, ever! It also allows you to configure the clock using a browser.

Don Luc

Sure Electronics

Inspiration
Bluetooth Audio Receiver
Aluminum Enclosure BT4.0

SKU: AA-AS41114

Inspiration Series

When the power is connected, the machine is working and LED lighting in a breathing-effect state. When the Bluetooth connection is successful, the LED is lighting all the time.

Welcome to use this self-made Bluetooth audio receiver starter. This product could work well together with Bluetooth adapter in your Laptop or Desktop computer, or mobile phones with Bluetooth audio stream output support. It supports Bluetooth V4.0 +EDR and A2DP protocol; it has a built in 3.5mm audio jack as well as a pair of RCA jacks for audio output. The distance from this unit and the Bluetooth transmitter could be up to 10meters but please notice that it may vary much based on the environment. Resistance and capacity components of high quality, including X7R ceramic capacitors and lower ESR electrolytic capacitors, are used to gain the perfect timber, finally realize high S/N ratio, low THD+N, wide frequency response range etc. This product has power defense plug protection function. The part of analog and digital audio are supported by two independent power chips, which eradicates interference of radio frequency and digital signals with audio at the extreme. Bluetooth 4.0 wireless audio receiver. Enjoy your music with no limitation between wireless and HiFi.

Features

* Single-end audio signal output
* LED status indicator
* External power and signal output connector
* Power defense plug protection function
* It supports APT-X decoding algorithm, which expand the Bluetooth frequency range from 16-20 KHz
* Short corresponding time

Applications

* Desktop Wireless Music Receiver
* Wireless audio source for amplifiers
* Wireless headphone driver (HP amp needed to use with some headphones)

Specifications

Following table lists all typical data of the Bluetooth Audio Receiver Starter.

Note:

Stresses beyond the listed maximum power supply voltage may cause the permanent damage to components on board.

Don Luc

ArduiNIX

ArduiNIX: 8 x Nixie Tubes

The ArduiNIX shield is a user programmable platform for driving multiplexed Nixie tube or other high voltage displays.

The ArduiNIX shield uses digital data pins 2,3,4,5,6,7,8,9,10,11,12,13 on the Arduino.

AREF, IOREF, TX(digital 1), RX(digital 0), Analog 0-5, digital 18 and 19 are free to use as inputs/outputs.

An explanation of how the Arduinix works:

The ArduiNIX works by listening to a signal from the Arduino to tell it when to switch on one of the four anode pins., and when to switch on any single or combination of cathode channels in the two sets of 10 cathode sets that are controlled by the nixie tube driver chips.

The Anode pins go hot, send 180 volts to the nixie tube anode connection, and the system waits for the code to tell the arduinix to ground out one of the cathode pins that are controlled by the twoDriver ICs.

Once the Arduino code tells the ArduiNIX to open an anode channel, which is connected to the anode pin of your tube, and the code tells the ArduiNIX to ground out a cathode channel, 180 volts flow into the nixie tube, lighting the element that is connected to the cathode channel.

When multiplexing, you have one anode channel connected to two nixie tubes, and one set of nixie cathodes per cathode channels on the ArduiNIX. Doing so allows you to drive up to 8 ten element nixie tubes, pairs of tubes sharing anodes, alternating cathode grounds at a fast enough rate that we don’t see a flicker.

The ArduiNIX is 4×20 Multiplexed,meaning there are a total of 4 anodes and 20 cathodes that can be multiplexed and controlled through the code. This means that up to 80 signals can be controlled. Either eight 10 numeral tubes or 80 Neon bulbs like the INS-1. Or any combination of numeric tubes and dots.

The ArduiNIX V3 features Analog 0-5, GND, Reset, SCL, SDA, AREF, 5V, TX and RX broken out to an input/output section of headers at the front of the board near the cathode bank.

Don Luc