The Alpha Geek – Geeking Out

DonLuc

Technology Experience -Single-Board Microcontrollers (PIC, Arduino, Raspberry Pi, Espressif, etc...) -Robotics -Research & Development (R & D) -Desktop Applications (Windows, OSX, Linux, Multi-OS, Multi-Tier, etc...) -Mobile Applications (Android, iOS, Blackberry, Windows Mobile, Windows CE, etc...) -Web Applications (LAMP, Scripting, Java, ASP, ASP.NET, RoR, Wakanda, etc...) -Social Media Programming & Integration (Facebook, Twitter, YouTube, Pinterest, etc...) -Content Management Systems (Wordpress, Drupal, Joomla, Moodle, etc...) -Bulletin Boards (phpBB, SMF, Vanilla, jobberBase, etc...) -eCommerce (WooCommerce, OSCommerce, ZenCart, PayPal Shopping Cart, etc...) Instructor -PIC Microcontrollers -Arduino -Raspberry Pi -Espressif -Robotics -DOS, Windows, OSX, Linux, iOS, Android, Multi-OS -Linux-Apache-PHP-MySQL Follow Us J. Luc Paquin – Curriculum Vitae http://www.donluc.com/DLE/LucPaquinCVEngMk2021a.pdf Web: http://www.donluc.com/ Web: http://www.jlpconsultants.com/ Web: http://www.donluc.com/DLE/ Web: http://www.donluc.com/DLHackster/ Web: https://www.hackster.io/neosteam-labs Patreon: https://www.patreon.com/DonLucElectronics Facebook: https://www.facebook.com/neosteam.labs.9/ YouTube: https://www.youtube.com/channel/UC5eRjrGn1CqkkGfZy0jxEdA Twitter: https://twitter.com/labs_steam Pinterest: https://www.pinterest.com/NeoSteamLabs/ Instagram: https://www.instagram.com/neosteamlabs/ Don Luc

EECI – STA-16 Status Input Interface

EECI STA-16 Mk01a

Electronic Energy Control Inc

STA-16 – RS-232 Contact Monitor Voltage Monitor

Designed for continuous 24 hour industrial operation.

Low cost – High reliability – 15 years of proven performance in the energy management field.

In addition to use in energy management and HVAC, the STA-16 is widely used for equipment monitoring and for use as a security system interface with event logging.

Connects to RS-232.

Full technical support provided by on staff advisors.

Optional Touch Tone Input available.

Optional AC Opto Isolators available for use with the digital inputs.

Expandable up to 144 digital inputs or up to 32 analog inputs using ST-32 or AD-16 expansion cards.

Expandable to control up to 112 relays or digital outputs using EX-16 or EX-32 expansion cards.

Compatible with all versions of Windows including XP, Vista, Windows 7 and Windows 8.

Open Source – Source code examples included in Microsoft Visual Basic 6, Microsoft Visual Basic.Net, VB 2008, VB 2010, Microsoft ASP.NET, Assembly, C and others.

Includes CD with Technical Reference and Data Logging Software – Cable, terminal block and power supply sold separately.

The STA-16 Status Input Interface provides two 8 channel status input ports which allow input of on/off status information into a conventional PC for a wide variety of monitoring and signaling applications. Uses include the input of on/off status information of relays, switches, thermostats, security system motion detectors and magnetic switches, smoke detectors, heating and air conditioning equipment, air flow switches, air damper position switches, pressure switches and thousands of other devices. The STA-16 also has many applications in HVAC and home automation. The energy consumption of equipment with a constant load (lighting, resistance heating, hot water heaters, etc.) is easily computed by multiplying the time on by the equipment’s KW rating. The STA-16 is ideal for use in logging energy usage or equipment performance and is also well suited for use as a security system logger (to record times doors are opened, motion detectors tripped, alarms or other events). Other uses include the input of 8 or 16 bit binary codes for interfacing to TTL or CMOS level digital signals (allowing connection to counters, parallel data bus lines and other types of digital devices and equipment). The KY-12M Keypad may be connected directly to the STA-16 status input ports for use with security systems, door entry access, remote data entry and other uses. A modem will permit the status inputs to be monitored from a remote site (or use an Internet connection). The status information is obtained by transmitting a single byte port code to the STA-16. The STA-16 then transmits back a single byte code with each bit representing the 8 inputs on that port. The status inputs are turned on by applying a small current (6 ma typical) to the LED inside the opto coupler on the STA-16 (minimum 1.5 volts required, common cathode). Optional AC opto couplers are available which will turn on in both directions, allowing for both common cathode and common anode configurations. The input voltage range defaults to a 6 to 18 volt range with a 1.8 K series resistor to the LED (the STA-16 may be ordered with other resistor values or with no resistors by specifying the /M option). The STA-16 Status Input Interface provides a relay expansion port to control up to 112 relays (using EX-16 or EX-32 relay expansion cards) and an input expansion port which allows for expansion to 144 status inputs or 32 analog inputs (using ST-32, AD-16 or AD-32 expansion cards). An optional Touch Tone input is also available. Includes technical reference, software examples and STA-16 Data Acquisition Software for Windows (for use with Windows versions 3.0, 3.1, Windows 95, 98, 2000, ME, NT, XP, Vista and Windows 7, 8). Software is also provided that allow the STA-16 inputs and/or relays to be controlled or monitored over a network (LAN, Internet, etc.).

Don Luc

Machine

A machine is a tool containing one or more parts that uses energy to perform an intended action. Machines are usually powered by mechanical, chemical, thermal, or electrical means, and are often motorized. Historically, a power tool also required moving parts to classify as a machine. However, the advent of electronics has led to the development of power tools without moving parts that are considered machines.

A simple machine is a device that simply transforms the direction or magnitude of a force, but a large number of more complex machines exist. Examples include vehicles, electronic systems, molecular machines, computers, television, and radio.

Electronic Devices

Vacuum tube, Transistor, Diode, Resistor, Capacitor, Inductor, Memristor, Semiconductor, Computer.

Robots

Actuator, Servo, Servomechanism, Stepper motor, Computer.

Electronic Machine

Electronics is the branch of physics, engineering and technology dealing with electrical circuits that involve active electrical components such as vacuum tubes, transistors, diodes and integrated circuits, and associated passive interconnection technologies. The nonlinear behavior of active components and their ability to control electron flows makes amplification of weak signals possible and is usually applied to information and signal processing. Similarly, the ability of electronic devices to act as switches makes digital information processing possible. Interconnection technologies such as circuit boards, electronic packaging technology, and other varied forms of communication infrastructure complete circuit functionality and transform the mixed components into a working system.

Don Luc

Ontrak ADU208 – Mk1

Ontrak ADU208

Ontrak ADU208 01 Mk01

Ontrak ADU208 01 Mk02

Ontrak ADU208 01 Mk03

ADU208 USB Relay I/O Interface ( Dimensions, 5.1″ X 2.8 X 1.0″ )

The ADU208 USB Relay I/O Interface allows control of 8 relay contact outputs, 8 contact or TTL inputs, and 8 event counters via a USB port. The ADU208 can effectively convert a standard PC to a powerful PLC ( programmable logic controller ). High quality PA-Series relays from Aromat offer superior performance. This low-cost serial relay contact interface is easy to use with VB, VB.NET, and Visual C++ via standard HID drivers included with Windows 98,2000,XP. A mini-driver ( DLL )* is also provided allowing control using standard ASCII commands using familiar readfile , writefile commands. The ADU208 includes a 10′ USB cable and is available as a PCB or in an enclosure with several mounting options.

Key Benefits, ADU208 USB Relay I/O Interface

Provides a standard PC with PLC ( programmable logic controller ) functions.
Low-cost .
Bus Powered, No external power supply required.
8, N. O. relay contact outputs rated 5.0A @ 120VAC, 5.0A @ 30VDC
CSA/UL Approved, CE Marked
High quality Aromat PA-series relays offer superior performance.
8 Digital inputs suitable for contact or TTL Input , also accept up to 24VDC
Inputs feature optical isolation to 3500V ( 500V channel to channel )
Programmable watchdog functions.
Bi-colour LED status indicator.
Self-resetting, fused 5V output
High quality cage-clamp type terminal blocks.
Uses standard HID drivers included with Windows 98SE,2000,XP
Mini-driver ( DLL ) provided for use with VB,VC, LabVIEW and TestPoint
Programming examples and sample code included for VB, Visual C++
Eight, 16-bit event counters
Programmable debounce setting for event counters.
No power supply required.
Meets IEC61000-4-2 ESD protection for USB port.
Available in enclosure or as PCB only.

Don Luc

Project #3 – LCD Shield – Mk5

LCD Shield Mk5.01

LCD Shield Mk5.02

LCD Shield Mk5.03

LCD Shield Mk5.04

LCD Shield Mk5.05

LCD Shield Mk5.06

LCDShieldMk5.1.ino

// ***** Don Luc *****
// Software Version Information
// 5.1

// include the library code:
#include <Wire.h>
#include <Adafruit_MCP23017.h>
#include <Adafruit_RGBLCDShield.h>
#include <SPI.h>
#include <RTClib.h>
#include <RTC_DS3231.h>
#include <OneWire.h> 

RTC_DS3231 RTC;

#define SQW_FREQ DS3231_SQW_FREQ_1024     //0b00001000   1024Hz

Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield();

// These #defines make it easy to set the backlight color
#define OFF 0x0
#define RED 0x1
#define YELLOW 0x3
#define GREEN 0x2
#define TEAL 0x6
#define BLUE 0x4
#define VIOLET 0x5
#define WHITE 0x7

int yy = 0;
uint8_t momentaryButton = 0;

// Chorno
boolean isChorno = true;
boolean isChor = false;
char datastr[100];
int zz = 0;
// LDR (light dependent resistor)
int LDR_Pin = A0;
int LDRReading = 0;
String LDR = "";
// Temperature chip i/o
int DS18S20_Pin = 2; //DS18S20 Signal pin on digital 2
OneWire ds(DS18S20_Pin);  // on digital pin 2
float temperature = 0;
String tempZ = "";
// Potentiometer
int potPin = A2;    // select the input pin for the potentiometer
int ledPin = 4;   // select the pin for the LED
boolean isVal = false;
int potPot = 0;
String cap = "";

void loop() {

  RGBLCDShield.clear();
    
  // ChronoDot
  // set the cursor to column 0, line 1
  RGBLCDShield.setCursor(0, 1);
  timeChrono();
  // LDR (light dependent resistor)
  timeLDR();
  // Temperature chip i/o
  temperatu();
  // Potentiometer
  getPotentio();
    
  momentaryButton = RGBLCDShield.readButtons();

  // set the cursor to column 0, line 0
  RGBLCDShield.setCursor(0,0);

  switch ( yy ) {
    case 1:
      // LDR (light dependent resistor)
      isLDR();
      break;
    case 2:
      // Temperature chip i/o
      isTe();
      break;
    case 3:
      // Potentiometer
      isCap();
      break;
    case 4:
      // Yellow
      RGBLCDShield.print("YELLOW - RIGHT");
      break;
    case 5:
      // OFF
      RGBLCDShield.print("OFF");
      break;
    default: 
      yy = 0;
      RGBLCDShield.print("Don Luc!!!");
   }
   
  if ( momentaryButton ) {
    
    if ( momentaryButton & BUTTON_UP ) {
      isChorno = true;
      yy = 1;
      // LDR (light dependent resistor)
      RGBLCDShield.setBacklight(GREEN);
    }
    
    if ( momentaryButton & BUTTON_DOWN ) {
      isChorno = true;
      yy = 2;
      // Temperature chip i/o
      RGBLCDShield.setBacklight(RED);
    }
    
    if ( momentaryButton & BUTTON_LEFT ) {
      isChorno = true;
      yy =3;
      // Potentiometer
      RGBLCDShield.setBacklight(BLUE);
    }
    
    if ( momentaryButton & BUTTON_RIGHT ) {
      isChorno = true;
      yy = 4;
      //RGBLCDShield.print("YELLOW - RIGHT");
      RGBLCDShield.setBacklight(YELLOW);
    }
    
    if ( momentaryButton & BUTTON_SELECT ) {
      isChorno = false;
      yy = 5;
      //RGBLCDShield.print("OFF");
      RGBLCDShield.setBacklight(OFF);
    }
    
  }
  
  delay(5000);
  
}

setup.ino

void setup() {    
   
  // set up the LCD's number of columns and rows: 
  RGBLCDShield.begin(16, 2);
  RGBLCDShield.setBacklight(VIOLET);
  
  // ChronoDot
  setupChrono();
  
  // Pot
  pinMode(ledPin, OUTPUT);
    
}

ChronoDot.ino

void setupChrono() {

  RTC.begin();
  
  DateTime now = RTC.now();
  DateTime compiled = DateTime(__DATE__, __TIME__);
  RTC.getControlRegisterData( datastr[0] );  
   
}

void timeChrono() {
 
    DateTime now = RTC.now();
    DateTime isNow (now.unixtime() + 5572 * 86400L + 26980);

    if ( isChorno == true )
    {
      if ( isChor == false ) 
        {          
          isChor = true;
          RGBLCDShield.print(isNow.year(), DEC);
          RGBLCDShield.print('/');
          RGBLCDShield.print(isNow.month(), DEC);
          RGBLCDShield.print('/');
          RGBLCDShield.print(isNow.day(), DEC);
          RGBLCDShield.print(' ');
          RGBLCDShield.print(' ');
        }
        else if ( isChor == true )
        {
          isChor = false;
          RGBLCDShield.print(isNow.hour(), DEC);
          RGBLCDShield.print(':');
          RGBLCDShield.print(isNow.minute(), DEC);
          RGBLCDShield.print(':');
          RGBLCDShield.print(isNow.second(), DEC);
          RGBLCDShield.print(' ');
          RGBLCDShield.print(' ');
        }
    }
    
}

getLDR.ino

void timeLDR() {
  
  // LDR
  LDRReading = analogRead(LDR_Pin);
 
}

void isLDR() {
  
  LDR = "LDR: ";
  LDR.concat(LDRReading); 
  // LDR (light dependent resistor)
  RGBLCDShield.print( LDR ); 
  
} 

getPot.ino

void getPotentio() {
  
    if ( isVal == false ) 
    {
       isVal = true;
       digitalWrite(ledPin, HIGH);  // turn the ledPin on
    }
    else if ( isVal == true )
    {
       isVal = false;
       digitalWrite(ledPin, LOW);  // turn the ledPin off
    }       
    potPot = analogRead(potPin);    // read the value from the sensor
  
}

void isCap(){
  
    cap = "Pot: ";
    cap.concat(potPot);
    RGBLCDShield.print( cap );

}

getTemperature.ino

float getTemp() {
  
  //returns the temperature from one DS18S20 in DEG Celsius
  byte data[12];
  byte addr[8];

  if ( !ds.search(addr)) {
      //no more sensors on chain, reset search
      ds.reset_search();
      return -1001;
  }

  if ( OneWire::crc8( addr, 7) != addr[7]) {
      return -1002;
  }

  if ( addr[0] != 0x10 && addr[0] != 0x28) {
      return -1003;
  }

  ds.reset();
  ds.select(addr);
  ds.write(0x44,1); // start conversion, with parasite power on at the end

  byte present = ds.reset();
  ds.select(addr);    
  ds.write(0xBE); // Read Scratchpad

  
  for (int i = 0; i < 9; i++) { // we need 9 bytes
    data[i] = ds.read();
  }
  
  ds.reset_search();
  
  byte MSB = data[1];
  byte LSB = data[0];

  float tempRead = ((MSB << 8) | LSB); //using two's compliment
  float TemperatureSum = tempRead / 16;
  
  return TemperatureSum;

}

void temperatu(){
  
  temperature = getTemp();
 
}

void isTe() {
  
  tempZ = "Temp: ";
  tempZ.concat(temperature);
  tempZ.concat("C");
  RGBLCDShield.print( tempZ );
  
}

Don Luc

Project #3 – LCD Shield – Mk4

LCD Shield Mk4.01

LCD Shield Mk4.02

LCD Shield Mk4.03

LCD Shield Mk4.04

LCD Shield Mk4.05

LCD Shield Mk4.06

LCD Shield Mk4.07

LCD Shield Mk4.08

LCD Shield Mk4.09

LCD Shield Mk4.10

LCD Shield Mk4.11

LCD Shield Mk4.12

LCD Shield Mk4.13

LCD Shield Mk4.14

LCD Shield Mk4.15

LCD Shield Mk4.16

LCD Shield Mk4.17

LCD Shield Mk4.18

LCD Shield Mk4.19

LCD Shield Mk4.20

LCD Shield Mk4.21

LCD Shield Mk4.22

1 X Mini Photocell

1 X Resistor 10k Ohm

1 X One Wire Digital Temperature Sensor – DS18B20

1 X Resistor 4.7k Ohm

1 X Trimpot 10K with Knob

1 X Resistor 1.65k Ohm

1 X 3MM Low Current Red LED

14 X Jumper Wires Premium 3″ M/M

1 X Project #3 – LED Shield – Mk3

LCDShieldMk4.3.ino

// ***** Don Luc *****
// Software Version Information
// 4.3

// include the library code:
#include <Wire.h>
#include <Adafruit_MCP23017.h>
#include <Adafruit_RGBLCDShield.h>
#include <SPI.h>
#include <RTClib.h>
#include <RTC_DS3231.h>
#include <OneWire.h> 

RTC_DS3231 RTC;

#define SQW_FREQ DS3231_SQW_FREQ_1024     //0b00001000   1024Hz

Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield();

// These #defines make it easy to set the backlight color
#define OFF 0x0
#define RED 0x1
#define YELLOW 0x3
#define GREEN 0x2
#define TEAL 0x6
#define BLUE 0x4
#define VIOLET 0x5
#define WHITE 0x7

// Chorno
boolean isChorno = false;
char datastr[100];
// LDR (light dependent resistor)
int LDR_Pin = A0;
String LDR = "";
// Temperature chip i/o
int DS18S20_Pin = 2; //DS18S20 Signal pin on digital 2
OneWire ds(DS18S20_Pin);  // on digital pin 2
String tempZ = "";
// Potentiometer
int potPin = A2;    // select the input pin for the potentiometer
int ledPin = 4;   // select the pin for the LED
boolean isVal = false;
int potPot = 0;
String cap = "";

void loop() {

  // timeChrono();
  timeChrono();
  
  uint8_t momentaryButton = RGBLCDShield.readButtons();

  if ( momentaryButton ) {

    RGBLCDShield.clear();
  
    RGBLCDShield.setCursor(0,0);
    
    if ( momentaryButton & BUTTON_UP ) {
      timeLDR();
      RGBLCDShield.print( LDR );
      RGBLCDShield.setBacklight(GREEN);
    }
    
    if ( momentaryButton & BUTTON_DOWN ) {
      temperatu();
      RGBLCDShield.print( tempZ );
      RGBLCDShield.setBacklight(RED);
    }
    
    if ( momentaryButton & BUTTON_LEFT ) {
      getPotentio();
      RGBLCDShield.print( cap );
      RGBLCDShield.setBacklight(BLUE);
    }
    
    if ( momentaryButton & BUTTON_RIGHT ) {
      RGBLCDShield.print("YELLOW - RIGHT");
      RGBLCDShield.setBacklight(YELLOW);
    }
    
    if ( momentaryButton & BUTTON_SELECT ) {
      RGBLCDShield.print("OFF");
      RGBLCDShield.setBacklight(OFF);
    }
        
  }
  
  delay(3000);
  
}

setup.ino

void setup() {    
   
  // set up the LCD's number of columns and rows: 
  RGBLCDShield.begin(16, 2);
  RGBLCDShield.print("Don Luc!!!");
  RGBLCDShield.setBacklight(VIOLET);
  
  // ChronoDot
  setupChrono();
  
  // Pot
  pinMode(ledPin, OUTPUT);
   
}

ChronoDot.ino

void setupChrono() {

  RTC.begin();
  
  DateTime now = RTC.now();
  DateTime compiled = DateTime(__DATE__, __TIME__);
  RTC.getControlRegisterData( datastr[0] );  
 
}

void timeChrono() {
 
    DateTime now = RTC.now();
    DateTime isNow (now.unixtime() + 5572 * 86400L + 26980);
    
    // set the cursor to column 0, line 1
    RGBLCDShield.setCursor(0, 1);
    
    if ( isChorno == false ) 
    {
      isChorno = true;
      RGBLCDShield.print(isNow.year(), DEC);
      RGBLCDShield.print('/');
      RGBLCDShield.print(isNow.month(), DEC);
      RGBLCDShield.print('/');
      RGBLCDShield.print(isNow.day(), DEC);
      RGBLCDShield.print(' ');
      RGBLCDShield.print(' ');
    }
    else if ( isChorno == true )
    {
      isChorno = false;
      RGBLCDShield.print(isNow.hour(), DEC);
      RGBLCDShield.print(':');
      RGBLCDShield.print(isNow.minute(), DEC);
      RGBLCDShield.print(':');
      RGBLCDShield.print(isNow.second(), DEC);
      RGBLCDShield.print(' ');
      RGBLCDShield.print(' ');
    }

}

getLDR.ino

void timeLDR() {
  
  // LDR
  int LDRReading = analogRead(LDR_Pin);
  LDR = "LDR: ";
  LDR.concat(LDRReading); 

}

getPot.ino

void getPotentio() {
  
    if ( isVal == false ) 
    {
       isVal = true;
       digitalWrite(ledPin, HIGH);  // turn the ledPin on
    }
    else if ( isVal == true )
    {
       isVal = false;
       digitalWrite(ledPin, LOW);  // turn the ledPin off
    }       
    potPot = analogRead(potPin);    // read the value from the sensor
    cap = "Pot: ";
    cap.concat(potPot);

}

getTemperature.ino

float getTemp() {
  
  //returns the temperature from one DS18S20 in DEG Celsius
  byte data[12];
  byte addr[8];

  if ( !ds.search(addr)) {
      //no more sensors on chain, reset search
      ds.reset_search();
      return -1001;
  }

  if ( OneWire::crc8( addr, 7) != addr[7]) {
      return -1002;
  }

  if ( addr[0] != 0x10 && addr[0] != 0x28) {
      return -1003;
  }

  ds.reset();
  ds.select(addr);
  ds.write(0x44,1); // start conversion, with parasite power on at the end

  byte present = ds.reset();
  ds.select(addr);    
  ds.write(0xBE); // Read Scratchpad

  
  for (int i = 0; i < 9; i++) { // we need 9 bytes
    data[i] = ds.read();
  }
  
  ds.reset_search();
  
  byte MSB = data[1];
  byte LSB = data[0];

  float tempRead = ((MSB << 8) | LSB); //using two's compliment
  float TemperatureSum = tempRead / 16;
  
  return TemperatureSum;

}

void temperatu(){
  
  float temperature = getTemp();
  tempZ = "Temp: ";
  tempZ.concat(temperature);
  tempZ.concat("C");

}

Don Luc

Project #3 – LCD Shield – Mk3

LCD Shield Mk3.01

LCD Shield Mk3.02

LCD Shield Mk3.03

2 X Jumper Wires Premium 3″ M/M

1 X Project #3 – LED Shield – Mk2

LCDShieldMk3.0.ino

// ***** Don Luc *****
// Software Version Information
// 3.0

// include the library code:
#include <Wire.h>
#include <Adafruit_MCP23017.h>
#include <Adafruit_RGBLCDShield.h>
#include <SPI.h>
#include <RTClib.h>
#include <RTC_DS3231.h>

RTC_DS3231 RTC;

#define SQW_FREQ DS3231_SQW_FREQ_1024     //0b00001000   1024Hz

Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield();

// These #defines make it easy to set the backlight color
#define OFF 0x0
#define RED 0x1
#define YELLOW 0x3
#define GREEN 0x2
#define TEAL 0x6
#define BLUE 0x4
#define VIOLET 0x5
#define WHITE 0x7

boolean isChorno = false;

char datastr[100];

void loop() {
   
  // timeChrono();
  timeChrono();

  uint8_t momentaryButton = RGBLCDShield.readButtons();

  if ( momentaryButton ) {

    RGBLCDShield.clear();
  
    RGBLCDShield.setCursor(0,0);
    
    if ( momentaryButton & BUTTON_UP ) {
      RGBLCDShield.print("GREEN - UP");
      RGBLCDShield.setBacklight(GREEN);
    }
    
    if ( momentaryButton & BUTTON_DOWN ) {
      RGBLCDShield.print("RED - DOWN");
      RGBLCDShield.setBacklight(RED);
    }
    
    if ( momentaryButton & BUTTON_LEFT ) {
      RGBLCDShield.print("BLUE - LEFT");
      RGBLCDShield.setBacklight(BLUE);
    }
    
    if ( momentaryButton & BUTTON_RIGHT ) {
      RGBLCDShield.print("YELLOW - RIGHT");
      RGBLCDShield.setBacklight(YELLOW);
    }
    
    if ( momentaryButton & BUTTON_SELECT ) {
      RGBLCDShield.print("OFF");
      RGBLCDShield.setBacklight(OFF);
    }
        
  }
  
  delay(3000);
  
}

setup.ino

void setup() {

  // set up the LCD's number of columns and rows: 
  RGBLCDShield.begin(16, 2);
  RGBLCDShield.print("Don Luc!!!");
  RGBLCDShield.setBacklight(VIOLET);
  
  // ChronoDot
  setupChrono();    
  
}

ChronoDot.ino

void setupChrono() {

  RTC.begin();
  
  DateTime now = RTC.now();
  DateTime compiled = DateTime(__DATE__, __TIME__);
  RTC.getControlRegisterData( datastr[0] );    

}

void timeChrono() {

    DateTime now = RTC.now();
    DateTime isNow (now.unixtime() + 5572 * 86400L + 26980);
    
    // set the cursor to column 0, line 1
    RGBLCDShield.setCursor(0, 1);
 
    if ( isChorno == false ) 
    {
      isChorno = true;
      RGBLCDShield.print(isNow.year(), DEC);
      RGBLCDShield.print('/');
      RGBLCDShield.print(isNow.month(), DEC);
      RGBLCDShield.print('/');
      RGBLCDShield.print(isNow.day(), DEC);
      RGBLCDShield.print(' ');
      RGBLCDShield.print(' ');
    }
    else if ( isChorno == true )
    {
      isChorno = false;
      RGBLCDShield.print(isNow.hour(), DEC);
      RGBLCDShield.print(':');
      RGBLCDShield.print(isNow.minute(), DEC);
      RGBLCDShield.print(':');
      RGBLCDShield.print(isNow.second(), DEC);
      RGBLCDShield.print(' ');
      RGBLCDShield.print(' ');
    }
  
}

Don Luc

Project #3 – LCD Shield – Mk2

LCD Shield Mk2.01

LCD Shield Mk2.02

LCD Shield Mk2.03

LCD Shield Mk2.04

LCD Shield Mk2.05

LCD Shield Mk2.06

LCD Shield Mk2.07

LCD Shield Mk2.08

LCD Shield Mk2.09

LCD Shield Mk2.10

LCD Shield Mk2.11

LCD Shield Mk2.12

LCD Shield Mk2.13

LCD Shield Mk2.14

LCD Shield Mk2.15

LCD Shield Mk2.16

LCD Shield Mk2.17

LCD Shield Mk2.18

LCD Shield Mk2.19

LCD Shield Mk2.20

LCD Shield Mk2.21

LCD Shield Mk2.22

LCD Shield Mk2.23

LCD Shield Mk2.24

LCD Shield Mk2.25

1 X ChronoDot

1 X ProtoScrewShield

1 X Breadboard

4 X Jumper Wires Premium 3″ M/M

1 X CR1632

1 X Project #3 – LED Shield – Mk1

LCDShieldMk2.2.ino

// ***** Don Luc *****
// Software Version Information
// 2.2

// include the library code:
#include <Wire.h>
#include <Adafruit_MCP23017.h>
#include <Adafruit_RGBLCDShield.h>

Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield();

// These #defines make it easy to set the backlight color
#define OFF 0x0
#define RED 0x1
#define YELLOW 0x3
#define GREEN 0x2
#define TEAL 0x6
#define BLUE 0x4
#define VIOLET 0x5
#define WHITE 0x7

uint8_t i = 0;

void loop() {
  
  timeChrono();

  uint8_t momentaryButton = RGBLCDShield.readButtons();

  if ( momentaryButton ) {
    
    RGBLCDShield.clear();
    RGBLCDShield.setCursor(0,0);
    
    if ( momentaryButton & BUTTON_UP ) {
      RGBLCDShield.print("GREEN - UP ");
      RGBLCDShield.setBacklight(GREEN);
    }
    
    if ( momentaryButton & BUTTON_DOWN ) {
      RGBLCDShield.print("RED - DOWN ");
      RGBLCDShield.setBacklight(RED);
    }
    
    if ( momentaryButton & BUTTON_LEFT ) {
      RGBLCDShield.print("BLUE - LEFT ");
      RGBLCDShield.setBacklight(BLUE);
    }
    
    if ( momentaryButton & BUTTON_RIGHT ) {
      RGBLCDShield.print("YELLOW - RIGHT ");
      RGBLCDShield.setBacklight(YELLOW);
    }
    
    if ( momentaryButton & BUTTON_SELECT ) {
      RGBLCDShield.print("OFF ");
      RGBLCDShield.setBacklight(OFF);
    }
        
  }
  
  delay(1000);
  
}

setup.ino

void setup() {

  // set up the LCD's number of columns and rows: 
  RGBLCDShield.begin(16, 2);
  RGBLCDShield.print("Don Luc!!!");
  RGBLCDShield.setBacklight(VIOLET);
  
  // ChronoDot
  setupChrono();    
  
}

ChronoDot.ino

void setupChrono() {

  // clear /EOSC bit
  // Sometimes necessary to ensure that the clock
  // keeps running on just battery power. 
  Wire.beginTransmission(0x68); // address DS3231
  Wire.write(0x0E); // select register
  Wire.write(0b00011100); // write register bitmap, bit 7 is /EOSC
  Wire.endTransmission();  

}

void timeChrono() {

  // set the cursor to column 0, line 1
  RGBLCDShield.setCursor(0, 1);
  
   // send request to receive data starting at register 0
  Wire.beginTransmission(0x68); // 0x68 is DS3231 device address
  Wire.write((byte)0); // start at register 0
  Wire.endTransmission();
  Wire.requestFrom(0x68, 3); // request three bytes (seconds, minutes, hours)
 
  while(Wire.available())
  { 

    int seconds = Wire.read(); // get seconds
    int minutes = Wire.read(); // get minutes
    int hours = Wire.read();   // get hours
 
    seconds = (((seconds & 0b11110000)>>4)*10 + (seconds & 0b00001111)); // convert BCD to decimal
    minutes = (((minutes & 0b11110000)>>4)*10 + (minutes & 0b00001111)); // convert BCD to decimal
    hours = (((hours & 0b00100000)>>5)*20 + ((hours & 0b00010000)>>4)*10 + (hours & 0b00001111)); // convert BCD to decimal (assume 24 hour mode)
 
    // print the number of seconds since reset:
    RGBLCDShield.print(hours);
    RGBLCDShield.print(":");
    RGBLCDShield.print(minutes);
    RGBLCDShield.print(":");
    RGBLCDShield.print(seconds);

  }
  
}

Don Luc

Project #3 – LCD Shield – Mk1

LCDShield1

LCDShield2

LCDShield3

LCDShield4

LCDShield5

LCDShield6

LCDShield7

LCDShield8

LCDShield9

LCDShield10

LCDShield11

LCDShield12

LCDShield13

LCDShield14

LCDShield15

LCDShield16

LCDShield17

LCDShield18

LCDShield19

LCDShield20

1 X Arduino UNO Rev3

1 X Adafruit I2C Controlled + Keypad Shield Kit for 16×2 LCD

1 X RGB backlight positive LCD 16×2 + extras – black on RGB

LCDShieldMk1.3.ino

// ***** Don Luc *****
// Software Version Information
// 1.3

// include the library code:
#include <Wire.h>
#include <Adafruit_MCP23017.h>
#include <Adafruit_RGBLCDShield.h>

Adafruit_RGBLCDShield RGBLCDShield = Adafruit_RGBLCDShield();

// These #defines make it easy to set the backlight color
#define OFF 0x0
#define RED 0x1
#define YELLOW 0x3
#define GREEN 0x2
#define TEAL 0x6
#define BLUE 0x4
#define VIOLET 0x5
#define WHITE 0x7

uint8_t i = 0;

void loop() {
  
  // set the cursor to column 0, line 1
  RGBLCDShield.setCursor(0, 1);
  // print the number of seconds since reset:
  RGBLCDShield.print(millis() / 1000);

  uint8_t momentaryButton = RGBLCDShield.readButtons();

  if ( momentaryButton ) {
    
    RGBLCDShield.clear();
    RGBLCDShield.setCursor(0,0);
    
    if ( momentaryButton & BUTTON_UP ) {
      RGBLCDShield.print("GREEN - UP ");
      RGBLCDShield.setBacklight(GREEN);
    }
    
    if ( momentaryButton & BUTTON_DOWN ) {
      RGBLCDShield.print("RED - DOWN ");
      RGBLCDShield.setBacklight(RED);
    }
    
    if ( momentaryButton & BUTTON_LEFT ) {
      RGBLCDShield.print("BLUE - LEFT ");
      RGBLCDShield.setBacklight(BLUE);
    }
    
    if ( momentaryButton & BUTTON_RIGHT ) {
      RGBLCDShield.print("YELLOW - RIGHT ");
      RGBLCDShield.setBacklight(YELLOW);
    }
    
    if ( momentaryButton & BUTTON_SELECT ) {
      RGBLCDShield.print("OFF ");
      RGBLCDShield.setBacklight(OFF);
    }
    
  }
  
}

setup.ino

void setup() {
    
  // set up the LCD's number of columns and rows: 
  RGBLCDShield.begin(16, 2);

  // We track how long it takes since
  int time = millis();
  RGBLCDShield.print("Don Luc!!!");
  time = millis() - time;
  RGBLCDShield.setBacklight(VIOLET);
}

Don Luc

Project #2 – Lens – LED – Mk6

LensLED6a

LensLED6b

LensLED6c

LensLED6d

1 X Arduino Pro Mini 328 – 5V/16MHz

5 X Break Away Headers – Straight

1 X FTDI Basic Breakout – 5V

1 X USB LiPoly Charger – Single Cell

1 X Polymer Lithium Ion Battery – 400mAh

5 X Standoff – Nylon (3/8″, #4-40)

12 X Pan Head, Slotted Drive, #4-40 Thread Size, 1/4″ Length

2 X Nut – Nylon Locknut – #4-40

1 X SPDT Mini Power Switch

3 X Panel Mount 10K potentiometer (Breadboard Friendly) – 10K Linear

1 X Potentiometer Knob – Soft Touch T18 – Red

1 X Potentiometer Knob – Soft Touch T18 – Blue

1 X Potentiometer Knob – Soft Touch T18 – White

22 X Hook-Up Wire – Assortment (Solid Core, 22 AWG)

1 X Prototyping Board

1 X Project #2 – Lens – LED – Mk1

Don Luc

Categories
Archives