The Alpha Geek – Geeking Out

SparkFun

SparkFun

Project #6: MicroView – Mk02

DonLuc1804Mk04a.ino

// ***** Don Luc *****
// Software Version Information
// 2.01
// DonLuc1804Mk04 2.01
// MicroView

#include <MicroView.h>
#include <Time.h>
#include <TimeLib.h>
// This is the radius of the clock:
#define CLOCK_SIZE 23
// Use these defines to set the clock's begin time
#define HOUR 9
#define MINUTE 00
#define SECOND 00
#define DAY 9
#define MONTH 4
#define YEAR 2018
// LCD W/H
const uint8_t maxW = uView.getLCDWidth();
const uint8_t midW = maxW/2;
const uint8_t maxH = uView.getLCDHeight();
const uint8_t midH = maxH/2;
// Clock
long zzz = 0;
static boolean firstDraw = false;
static unsigned long mSec = millis() + 1000;
static float degresshour, degressmin, degresssec, hourx, houry, minx, miny, secx, secy;
  
void loop() {

  drawFace();
  
  zzz = 0;
  while(zzz < 5000)
  {

     drawTime();
     zzz++;
     
  }
  
  uView.clear(PAGE);
  
  firstDraw = false;
  
  uView.setFontType(0);
  uView.setCursor(0,20);
  uView.print("09/04/2018");
  uView.display();
  delay(5000);
  
  uView.clear(PAGE);

}

drawFace.ino

void drawFace()
{

  // Draw the clock face. That includes the circle outline and
  // the 12, 3, 6, and 9 text.
  uView.setFontType(0); // set font type 0 (Smallest)
  
  uint8_t fontW = uView.getFontWidth();
  uint8_t fontH = uView.getFontHeight();
  
  //uView.setCursor(27, 0); // points cursor to x=27 y=0
  uView.setCursor(midW-fontW-1, midH-CLOCK_SIZE+1);
  uView.print(12);  // Print the "12"
  uView.setCursor(midW-(fontW/2)-1, midH+CLOCK_SIZE-fontH-1);
  uView.print(6);  // Print the "6"
  uView.setCursor(midW-CLOCK_SIZE+1, midH-fontH/2);
  uView.print(9);  // Print the "9"
  uView.setCursor(midW+CLOCK_SIZE-fontW-2, midH-fontH/2);
  uView.print(3);  // Print the "3"
  uView.circle(midW-1, midH-1, CLOCK_SIZE);
  
  //Draw the clock
  uView.display();
  
}

drawTime.ino

void drawTime()
{
   
  // If mSec
  if (mSec != (unsigned long)second()) 
  {
    // First time draw requires extra line to set up XOR's:
    if (firstDraw) 
    {
      uView.line(midW, midH, 32 + hourx, 24 + houry, WHITE, XOR);
      uView.line(midW, midH, 32 + minx, 24 + miny, WHITE, XOR);
      uView.line(midW, midH, 32 + secx, 24 + secy, WHITE, XOR);
    }
    // Calculate hour hand degrees:
    degresshour = (((hour() * 360) / 12) + 270) * (PI / 180);
    // Calculate minute hand degrees:
    degressmin = (((minute() * 360) / 60) + 270) * (PI / 180);
    // Calculate second hand degrees:
    degresssec = (((second() * 360) / 60) + 270) * (PI / 180);

    // Calculate x,y coordinates of hour hand:
    hourx = cos(degresshour) * (CLOCK_SIZE / 2.5);
    houry = sin(degresshour) * (CLOCK_SIZE / 2.5);
    // Calculate x,y coordinates of minute hand:
    minx = cos(degressmin) * (CLOCK_SIZE / 1.4);
    miny = sin(degressmin) * (CLOCK_SIZE / 1.4);
    // Calculate x,y coordinates of second hand:
    secx = cos(degresssec) * (CLOCK_SIZE / 1.1);
    secy = sin(degresssec) * (CLOCK_SIZE / 1.1);

    // Draw hands with the line function:
    uView.line(midW, midH, midW+hourx, midH+houry, WHITE, XOR);
    uView.line(midW, midH, midW+minx, midH+miny, WHITE, XOR);
    uView.line(midW, midH, midW+secx, midH+secy, WHITE, XOR);
    
    // Set firstDraw flag to true, so we don't do it again.
    firstDraw = true;
    
    // Actually draw the hands with the display() function.
    uView.display();
    
  }

}

setup.ino

void setup() {

  // Set the time in the time library:
  setTime(HOUR, MINUTE, SECOND, DAY, MONTH, YEAR);
 
  uView.begin();       // begin of MicroView
  uView.clear(ALL);    // erase hardware memory inside the OLED controller
  uView.display();     // display the content in the buffer memory, by default it is the MicroView logo
  delay(1000);
  uView.clear(PAGE);   // erase the memory buffer, when next uView.display() is called, the OLED will be cleared.

  uView.setFontType(1);
  uView.setCursor(0,20);
  uView.print("Don Luc");
  uView.display();
  delay(5000);
  
  uView.clear(PAGE);

  uView.display();  // display the content in the buffer

  // Draw clock face (circle outline & text):
  drawFace();
  
}

Don Luc

Project #6: MicroView – Mk01

DonLuc1804Mk03b.ino

// ***** Don Luc *****
// Software Version Information
// 1.01
// DonLuc1804Mk03 1.01
// MicroView

#include <MicroView.h>

void loop() {

	uView.setFontType(0);
	uView.setCursor(0,20);
	uView.print("  Don Luc  ");
	uView.display();
	delay(5000);

	uView.clear(PAGE);

	uView.setFontType(1);
	uView.setCursor(0,20);
	uView.print("Don Luc");
	uView.display();
	delay(5000);
  
	uView.clear(PAGE);
	
}

setup.ino

void setup() {
  
  uView.begin();       // begin of MicroView
  uView.clear(ALL);    // erase hardware memory inside the OLED controller
  uView.display();     // display the content in the buffer memory, by default it is the MicroView logo
  delay(1000);
  uView.clear(PAGE);   // erase the memory buffer, when next uView.display() is called, the OLED will be cleared.
  
}

MicroView
Project #6 – Mk01

Don Luc

Project #5: Lamps – Mk01

DonLuc1804Mk02.ino

// ***** Don Luc *****
// Software Version Information
// 1.01
// DonLuc1804Mk02 1.01
// Lamps

#include <Adafruit_NeoPixel.h>
// Which pin on the Arduino is connected to the NeoPixels
// Pin connected => 6
#define PIN 6
// How many NeoPixels are attached to the Arduino
// NUMPIXELS => 4
#define NUMPIXELS 4
Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
// Panel Mount 1K potentiometer Bright
// Bright => A0
const int sensorBright = A0;
int sBright = 0;
int brightVal = 0;         // the sensor value
int brightMin = 0;        // minimum sensor value
int brightMax = 0;           // maximum sensor value
// Panel Mount 1K potentiometer
// Delay => A1
const int sensorDelay = A1;
long delayVal = 0;
// Rotary Switch - 10 Position
// Number => A2 (0 => 9)
const int sensorNumber = A2;
// Panel Mount 1K potentiometer
// Red - Led
const int sensorRed = 9;
int red = 0;
int redMin = 0;
int redMax = 0;
// Panel Mount 1K potentiometer
// Green - Led
const int sensorGreen = 8;
int green = 0;
int greenMin = 0;
int greenMax = 0;
// Panel Mount 1K potentiometer
// Blue - Led
const int sensorBlue = 7;
int blue = 0;
int blueMin = 0;
int blueMax = 0;
// variables:
//int x = 0;
int y = 0;
int z = 0;

void loop() {

  number();

}

bright.ino

void bright(){

    switch (sBright) {
        case 1:
            brightVal = 255;
            break;
         default:
            // read the sensor:
            brightVal = analogRead(sensorBright);
            // apply the calibration to the sensor reading
            brightVal = map(brightVal, brightMin, brightMax, 0, 255);        
            // in case the sensor value is outside the range seen during calibration
            brightVal = constrain(brightVal, 0, 255);
            break;
    }
  
}

iled.ino

void iled() {

   // red
   red = analogRead(sensorRed); 
   // apply the calibration to the sensor reading red
   red = map(red, redMin, redMax, 0, 255);
   // in case the sensor value is outside the range seen during calibration
   red = constrain(red, 0, 255);
   // green
   green = analogRead(sensorGreen); 
   // apply the calibration to the sensor reading red
   green = map(green, greenMin, greenMax, 0, 255);
   // in case the sensor value is outside the range seen during calibration
   green = constrain(green, 0, 255);
   // blue
   blue = analogRead(sensorBlue); 
   // apply the calibration to the sensor reading red
   blue = map(blue, blueMin, blueMax, 0, 255);
   // in case the sensor value is outside the range seen during calibration
   blue = constrain(blue, 0, 255);
                 
}

neopix.ino

void neopix() {
  
  for(int i=0; i<NUMPIXELS; i++){

    // bright
    bright();   
    pixels.setBrightness( brightVal );
    // pixels.Color takes RGB values, from 0,0,0 up to 255,255,255    
    pixels.setPixelColor(i, pixels.Color(red,green,blue));
    // show
    pixels.show(); // This sends the updated pixel color to the hardware.
    // delay
    delay(50); // Delay for a period of time (in milliseconds).
    
  }
  
}

neopixt.ino

void neopixt() {
  
  for(int i=4; i<NUMPIXELS; i--){

    // bright
    bright();   
    pixels.setBrightness( brightVal );
    // pixels.Color takes RGB values, from 0,0,0 up to 255,255,255    
    pixels.setPixelColor(i, pixels.Color(red,green,blue));
    // show
    pixels.show(); // This sends the updated pixel color to the hardware.
    // delay
    delay(50); // Delay for a period of time (in milliseconds).
    
  }
  
}

number.ino

void number(){

  z = analogRead(sensorNumber);
  y = (z / 127);

  sBright = 20000;
  
  // range value:
  switch (y) {
    case  0:
      // Led
      iled();
      // neopix
      neopix();
      // delay
      delayVal = (0);     
      break;
    case 1:
      // Led
      iled();
      // neopix
      neopix();
      // delay
      sdelay();
      break;
    case 2:
      // Led
      iled();
      // neopixt
      neopixt();
      // delay
      sdelay();
      break;
    case 3:
      // White
      red = 255;
      green = 255;
      blue = 255; 
      // neopix       
      neopix();
      // delay
      delayVal = (0);
      break;  
    case 4:
      // Green
      red = 0;
      green = 255;
      blue = 0;
      // neopix        
      neopix();
      // delay
      delayVal = (0);
      break;
    case 5:
      // Red
      red = 255;
      green = 0;
      blue = 0;        
      // neopix        
      neopix();
      // delay
      delayVal = (0);
      break;
    case 6:
      // White
      red = 255;
      green = 255;
      blue = 255; 
      // neopix       
      neopix();
      // delay
      sdelay();
      break;       
    case 7:
      // Green
      red = 0;
      green = 255;
      blue = 0; 
      // neopix       
      neopix();
      // delay
      sdelay();
      break; 
    case 8:
      // Red
      red = 255;
      green = 0;
      blue = 0; 
      // neopix       
      neopix();
      // delay
      sdelay();
      break; 
    case 9:

      break;
  }
  
}

sdelay.ino

void sdelay() {

    delayVal = analogRead(sensorDelay);
    delayVal = (250 * delayVal);
      
}

setup.ino

void setup() {
  
    pixels.begin(); // This initializes the NeoPixel library.
    
}

Don Luc

SparkFun MicroView – OLED Arduino Module

Sparkfun: DEV-12923

Description

The MicroView is the first chip-sized Arduino compatible module that lets you see what your Arduino is thinking using a built-in OLED display. With the on-board 64×48 pixel OLED, you can use the MicroView to display sensor data, emails, pin status, and more. It also fits nicely into a breadboard to make prototyping easy. The MicroView also has a full-featured Arduino library to make programming the module easy.

In the heart of MicroView there is ATMEL’s ATmega328P, 5V & 3.3V LDO and a 64×48 pixel OLED display, together with other passive components that allow the MicroView to operate without any external components other than a power supply. Additionally, the MicroView is 100% code compatible with Arduino Uno (ATmega328P version), meaning the code that runs on an Arduino Uno will also be able to run on the MicroView if the IO pins used in the code are externally exposed on the MicroView.

Features

* 64×48 Pixel OLED Display
* ATmega328P
* 5V Operational Voltage
* VIN Range: 3.3V – 16V
* 12 Digital I/O Pins (3 PWM)
* 6 Analog Inputs
* Breadboard Friendly DIP Package
* 32KB Flash Memory
* Arduino IDE 1.0+ Compatible

Don Luc

Categories
Archives